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Abstract. The couplings of a collection of BF models to matter theories are addressed in the framework of
the antifield-BRST deformation procedure. The general theory is exemplified in the case where the matter
fields are a set of Dirac spinors and respectively a collection of real scalar fields.

PACS. 11.10.Ef

1 Introduction

The power of the BRST formalism was strongly increased
by its cohomological development, which allowed, among
others, a useful investigation of many interesting aspects
related to the perturbative renormalization problem [1–3],
the anomaly-tracking mechanism [3,4], the simultaneous
study of local and rigid invariances of a given theory [5],
as well as to the reformulation of the construction of con-
sistent interactions in gauge theories [6] in terms of the
deformation theory [7,8], or, actually, in terms of the de-
formation of the solution to the master equation.

The main aim of this paper is to construct all con-
sistent Lagrangian interactions in four spacetime dimen-
sions that can be added to a “free” model that describes a
generic matter theory uncoupled to a collection of abelian
BF models [9] by means of deforming the solution to the
master equation with the help of specific cohomological
techniques. The field sector of the four-dimensional BF
model consists of a collection of scalar fields, two sets of
vector fields and a system of two-forms. Interacting topo-
logical field theories of BF-type are important in view of
their relationship with Poisson sigma models, which are
known to explain interesting aspects of two-dimensional
gravity, including the study of classical solutions [10].
Other interesting aspects envisaging BF models can be
found in [11] from a Lagrangian perspective and also in
[12] from a Hamiltonian point of view. The results pre-
sented here extend our former work [13] on the Lagrangian
couplings between a sole BF model and matter fields.

The couplings are obtained on the grounds of
smoothness, locality, (background) Lorentz invariance and
Poincaré invariance. In addition, we require the conserva-
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tion of the number of derivatives on each field in order to
prevent any changes in the differential order of the field
equations with respect to the “free” model. The entire
Lagrangian formulation of the interacting theory is ob-
tained from the computation of the deformed solution to
the master equation, order by order in the coupling con-
stant g. The existence of consistent couplings of order g be-
tween the matter fields and the BF ones is ensured under
the supplementary, reasonable hypothesis that the matter
theory is invariant under some (non-trivial) bosonic global
symmetries, which produce some (non-trivially) conserved
currents jµ

a . It is essential that the number of rigid sym-
metries is equal to the number of BF fields from the collec-
tion. Based on the derivative order assumption, we argue
that the generators of the rigid symmetries cannot involve
the derivatives of the matter fields, and consequently we
take them to be linear in these fields, with some coef-
ficients that are the elements of a set of constant ma-
trices Ta. The consistency of the deformation procedure
at order g2 requires the existence of some antisymmetric
functions Wab that depend only on the undifferentiated
scalar fields, which have the meaning of the components
of the two-tensor on a Poisson manifold with the scalar
fields viewed as the local coordinates on the target space,
and holds in two situations. In the first case (type I so-
lution) all the matrices Ta commute and in the second
one (type II solution) their commutators close according
to a Lie algebra L (G) with the structure constants −f̄a

bc.
Type II solutions also restrict the components of the two-
tensor Wab to be polynomials of order one in the scalar
fields, with the coefficients of the linear terms precisely
f̄a

bc. The deformation procedure stops at order one if the
matter currents jµ

a include no derivatives and if they ei-
ther remain invariant under the gauge version of the rigid
symmetries in the first case or transform under the gauge
version according to the adjoint representation of L (G)
in the second case. Otherwise, there appear deformations
of order g2 and possibly of higher orders. It turns out
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that our procedure deforms everything, namely, the La-
grangian action, its gauge transformations and also the
accompanying gauge algebra.

This paper is organized into six sections. Section 2 in-
troduces the model to be considered and constructs its
“free” Lagrangian BRST symmetry. Section 3 briefly re-
views the procedure of adding consistent interactions in
gauge theories based on the deformation of the solution
to the master equation. In Sect. 4 we construct the La-
grangian interactions for the starting “free” system in four
dimensions by solving the deformation equations with the
help of standard cohomological techniques. Section 5 ap-
plies the theoretical part of the paper to the case where
the role of the matter fields is played by a set of Dirac
fields and respectively by a collection of real scalar fields,
and Sect. 6 ends the paper with the main conclusions.

2 “Free” BRST symmetry

We begin with a “free” theory in four spacetime dimen-
sions, described by the sum between a collection of BF-like
Lagrangian actions and a matter action,

S0
[
Aa

µ, H
a
µ, ϕa, B

µν
a , yi

]
=
∫

d4x

(
Ha

µ∂
µϕa +

1
2
Bµν

a ∂[µA
a
ν] + L0

([
yi
]))

≡ SBF
0
[
Aa

µ, H
a
µ, ϕa, B

µν
a

]
+ Smatt

0
[
yi
]
, (1)

where the BF field spectrum contains a set of two-forms
{Bµν

a }, two systems of one-forms
{
Aa

µ, H
a
µ

}
, and a col-

lection of scalar fields {ϕa}. The discrete index a is an
integer valued from 1 to N , and the number of matter
fields is denoted by I (i = 1, I). Here and in the sequel
the notation f ([q]) signifies that f depends on q and its
spacetime derivatives up to a finite order, and [µν · · · ] (or
possibly [ab · · · ]) means full antisymmetrization with re-
spect to the indices between brackets such that all the
independent terms appear only once and are not multi-
plied by additional numerical factors. We assume that the
Lagrangian density L0 is however no more than second
order in the derivatives of the matter fields yi and that it
displays no non-trivial gauge symmetries. In what follows
εi denotes the Grassmann parity of the matter field yi.
The action (1) is found to be invariant under the gauge
transformations (generating set)

δεA
a
µ = ∂µε

a ≡
(
R(A)a

µ

)
b
εb,

δεH
a
µ = 2∂νεaµν ≡

(
R(H)a
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b
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µνρ
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a

)b
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ερλσ
b ,

δεy
i = 0, (3)

that are abelian and off-shell, second-stage reducible. The
gauge parameters are all bosonic, with εaµν and εµνρ

a com-
pletely antisymmetric in their Lorentz indices. The redun-
dancy of the gauge generators of the fields Ha

µ and Bµν
a

decouples at the level of the “free” model, as it can be
seen from the reducibility relations
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where the reducibility functions respectively take the form
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All these properties can be synthesized by the statement
that the “free” model under discussion is a so-called “nor-
mal” gauge theory, of Cauchy order equal to four. In par-
ticular, the matter action Smatt

0
[
yi
]

is assumed to define a
theory of Cauchy order equal to one, while the BF model
alone, with the action SBF

0
[
Aa

µ, H
a
µ, ϕa, B

µν
a

]
, is described

by a linear gauge theory of Cauchy order equal to four.
With the purpose of constructing all consistent defor-

mations of this theory in mind, we initially determine its
BRST symmetry. The BRST algebra is generated by the
field, ghost and antifield spectra

Φα0 =
(
Aa

µ, H
a
µ, ϕa, B

µν
a , yi

)
,

Φ∗
α0

=
(
A∗µ

a , H∗µ
a , ϕ∗a, B∗a

µν , y
∗
i

)
, (9)
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(
ηa, Ca

µν , η
µνρ
a

)
, η∗

α1
=
(
η∗

a, C
∗µν
a , η∗a

µνρ

)
, (10)

ηα2 =
(
Ca

µνρ, η
µνρλ
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)
, η∗

α2
=
(
C∗µνρ

a , η∗a
µνρλ

)
, (11)

ηα3 = Ca
µνρλ, η

∗
α3

= C∗µνρλ
a , (12)

where the fermionic ghosts ηα1 and ηα3correspond to the
gauge parameters, respectively, to the second-order re-
ducibility relations, while the bosonic ghosts ηα2 are due
to the first-order redundancy of the generating set. The
star variables denote the antifields and exhibit statistics
opposite to that of the corresponding fields/ghosts.

Since both the gauge generators and the reducibility
functions are field independent, it follows that the BRST
differential reduces to

s = δ + γ, (13)

where δ is the Koszul–Tate differential, and γ means the
exterior longitudinal derivative. The Koszul–Tate differ-
ential is graded in terms of the antighost number (agh,
agh (δ) = −1) and enforces a resolution of the algebra of
smooth functions defined on the stationary surface of field
equations for action (1), C∞ (Σ), Σ : δS0/δΦ

α0 = 0. The
exterior longitudinal derivative is graded in terms of the
pure ghost number (pgh, pgh (γ) = 1) and is correlated
with the original gauge symmetry via its cohomology in
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pure ghost number zero computed in C∞ (Σ), which is
isomorphic to the algebra of physical observables for this
“free” theory. The degrees of the generators (9)–(12) from
the BRST complex are valued like

pgh(Φα0) = pgh(Φ∗
α0

) = pgh(η∗
α1

) = 0,
pgh(ηα1) = 1, (14)
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) = 0, (16)
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α2

) = 3,
agh(η∗

α3
) = 4, (17)

and the actions of δ and γ on them are given by
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γyi = 0, γηa = 0, γCa
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a , (25)

γCa
µνρ = 4∂λCa

µνρλ, γη
µνρλ
a = 0, γCa
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The overall degree from the BRST complex is named
the ghost number (gh) and is defined like the difference
between the pure ghost number and the antighost num-
ber, such that gh (δ) = gh (γ) = gh (s) = 1. The BRST
symmetry admits a canonical action s· = (·, S), where its
canonical generator (gh (S) = 0, ε (S) = 0) satisfies the
classical master equation

(S, S) = 0. (27)

The antibracket (, ) is obtained by decreeing the
fields/ghosts respectively conjugated with the correspond-
ing antifields. In the case of the “free” theory under dis-
cussion, the solution to the master equation takes the form

S = S0 +
∫

d4x
(
A∗µ

a ∂µη
a + 2H∗µ

a ∂νCa
µν − 3B∗a

µν∂ρη
µνρ
a

− 3C∗µν
a ∂ρCa

µνρ + 4η∗a
µνρ∂λη

µνρλ
a + 4C∗µνρ

a ∂λCa
µνρλ

)
,

(28)

and it contains pieces of antighost number ranging from
zero to three.

3 Basic equations
of the deformation procedure

We consider the problem of constructing the consistent
interactions that can be added to the “free” Lagrangian
action (1), S0 [Φα0 ] (where Φα0 means the original field
spectrum in (9)), invariant under the gauge transforma-
tions (2) and (3), written in a compact form like

δεΦ
α0 = Rα0

α1
εα1 ,

δS0

δΦα0
Rα0

α1
= 0, (29)

such that the couplings preserve both the field spectrum
and the original number of independent gauge symme-
tries. This issue is addressed by means of reformulating
the problem of constructing consistent interactions like a
deformation problem of the solution (28) to the master
equation corresponding to the “free” theory [7]. Such a
reformulation is possible due to the fact that the solution
to the master equation contains all the information on
the gauge structure of the theory. If a consistent interact-
ing gauge theory can be constructed, then the solution S
to the master equation associated with the “free” theory,
(S, S) = 0, can be deformed into a solution S̄,

S → S̄ = S + gS1 + g2S2 + · · ·
= S + g

∫
d4x a+ g2

∫
d4x b+ · · · , (30)

of the master equation for the deformed theory(
S̄, S̄

)
= 0, (31)

such that both the field/ghost and antifield spectra of the
initial theory, (9)–(12), are preserved. Equation (31) splits,
according to the various orders in the coupling constant
(deformation parameter) g, into (27) and

2 (S1, S) = 0, (32)
2 (S2, S) + (S1, S1) = 0, (33)

(S3, S) + (S1, S2) = 0, (34)
...

Equation (27) is fulfilled by hypothesis. The next one,
(32), requires that the first-order deformation of the solu-
tion to the master equation, S1, is a cocycle of the “free”
BRST differential s. However, only cohomologically non-
trivial solutions to (32) should be taken into account, since
the BRST-exact ones can be eliminated by a (in general
non-linear) field redefinition. This means that S1 pertains
to the ghost number zero cohomological space of s, H0 (s),
which is generically non-empty due to its isomorphism
to the space of physical observables of the “free” theory.
It has been shown in [7] due to the triviality of the an-
tibracket map in the cohomology of the BRST differential
that there are no obstructions in finding solutions to the
remaining equations ((33), (34) etc.). Unfortunately, the
resulting interactions may be non-local, and there might
even appear obstructions if one insists on their locality.
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The analysis of these obstructions can be done with the
help of cohomological techniques. As it will be seen below,
all the consistent interactions in the case of the model un-
der study turn out to be local.

4 Deformation of the “free” solution
to the master equation

Here, we compute the consistent Lagrangian interactions
that can be added to the “free” model analyzed so far,
which describes a generic matter theory plus a topologi-
cal BF-type model in four spacetime dimensions. This is
achieved by solving the deformation equations (32)–(34)
etc., with the help of some specific cohomological tech-
niques. Our aim is to determine the complete deformed
solution to the master equation, which is consistent to all
orders in the coupling constant. For obvious reasons, we
consider only smooth, local, (background) Lorentz invari-
ant and, moreover, Poincaré invariant quantities (i.e. we
do not allow explicit dependence on the spacetime coordi-
nates). The smoothness of the deformations refers to the
fact that the deformed solution (30) to the master equa-
tion is smooth in the coupling constant g and reduces to
the original solution (28) in the free limit g = 0. In addi-
tion, we require the conservation of the number of deriva-
tives on each field (this condition is frequently met in the
literature; for instance, see [14–16]). The last requirement
will be brought in only after the derivation of the general
form of the first-order deformation, during the consistency
procedure.

4.1 First-order deformation

4.1.1 Standard material: H (γ) and H (δ|d)

Initially, we approach the first-order deformation of the
solution to the master equation, described by (32). Using
the notation from (30), its local form is

sa = ∂µm
µ, (35)

for some local current mµ, so it requires that a is a s-
cocycle modulo the exterior spacetime differential d. In
order to analyze the above equation, we develop a accord-
ing to the antighost number

a =
J∑

k=0

ak, agh (ak) = k, gh (ak) = 0, ε (ak) = 0, (36)

and assume, without loss of generality, that a stops at
some finite value J of the antighost number. This can be
shown, for instance, like in [14] (Sect. 3), under the sole
assumption that the interacting Lagrangian at the first
order in the coupling constant, a0, has a finite, but oth-
erwise arbitrary derivative order. By taking into account
the decomposition (13) of the BRST differential, (35) is

equivalent to a tower of local equations, corresponding to
the various decreasing values of the antighost number

γaJ = ∂µ

(J)
m

µ

, (37)

δaJ + γaJ−1 = ∂µ

(J−1)
m

µ

, (38)

δak + γak−1 = ∂µ

(k−1)
m

µ

, 1 ≤ k ≤ J − 1, (39)

where
(

(k)
m

µ)
k=0,J

are some local currents, with

agh
(

(k)
m

µ)
= k. It can be proved that (37) can be re-

placed at strictly positive values of the antighost number
by

γaJ = 0, J > 0. (40)

The proof of this result is standard material and can be
found for instance in [14–17]. Then, in order to solve (35)
(equivalent with (40), and (38) and (39)) we clearly need
to compute the cohomology of γ, H (γ). Due to (23)–(26)
it is simple to see that H (γ) is spanned by

ω∆ =
(
F a

µν = ∂[µA
a
ν], ∂

µHa
µ, ϕa, ∂νB

µν
a , yi

)
, (41)

χ∗ =
(
Φ∗

α0
, η∗

α1
, η∗

α2
, η∗

α3

)
, (42)

and by their spacetime derivatives, as well as by the un-
differentiated ghosts

ηA1 =
(
ηa, ηµνρλ

a , Ca
µνρλ

)
. (43)

(The derivatives of the ghosts ηA1 are removed from H (γ)
since they are γ-exact, in agreement with the first relation
in (24), the last formula in (25) and respectively the first
definition from (26).) If we denote by eM

(
ηA1
)

the ele-
ments with the pure ghost number equal to M of a basis
in the space of polynomials in the ghosts ηA1 , it follows
that the general, local solution to (40) takes the form (up
to trivial γ-exact contributions)

aJ = µJ

([
ω∆
]
, [χ∗]

)
eJ
(
ηA1
)
, (44)

where agh (µJ) = J and pgh
(
eJ
)

= J . The objects µJ

(obviously non-trivial in H0 (γ)) were taken to have a
bounded number of derivatives and a finite antighost num-
ber, so they are polynomials in the antifields χ∗, in their
derivatives, in all the quantities ω∆ excepting the undiffer-
entiated scalar fields ϕa and the undifferentiated bosonic
matter fields yi (if any), as well as in all of their deriva-
tives. However, the µJ ’s may in principle have coefficients
that are infinite series in ϕa and in all commuting yi. Due
to their γ-closeness and (partial) polynomial character, µJ

will be called “invariant polynomials”. A useful property
is that the cohomology of d in the space of invariant poly-
nomials is trivial in form degree strictly less than four and
in strictly positive antighost number (for a general proof,
see [18]). This further leads to the conclusion that there
is no non-trivial descent for H (γ|d) in strictly positive
antighost number, or, to put it otherwise, that (37) can
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always be replaced with (40) for J > 0. The proof to the
last result can be done as in [15–17].

Replacing (44) in (38) we remark that a necessary (but
not sufficient) condition for the existence of (non-trivial)
solutions aJ−1 is that the invariant polynomials µJ from
(44) are (non-trivial) objects from the local cohomology of
the Koszul–Tate differential H (δ|d) in antighost number
J > 0 and in pure ghost number equal to zero, µJ ∈
HJ (δ|d), i.e.

δµJ = ∂µ

(J−1)
j

µ

, agh

(
(J−1)
j

µ
)

= J − 1,

pgh

(
(J−1)
j

µ
)

= 0. (45)

Consequently, we need to investigate some of the main
properties of the local cohomology of the Koszul–Tate dif-
ferential in pure ghost number zero and in strictly positive
antighost numbers1 in order to fully determine the compo-
nent aJ of highest antighost number from the first-order
deformation. To this end we observe that the form (1) of
the “free” Lagrangian action together with the definitions
(18)–(22) enable us to analyze Hk (δ|d) in terms of the
local cohomologies Hmatt

k (δ|d) and HBF
k (δ|d), where the

last local cohomologies in antighost number k refer to the
Koszul–Tate operator that acts non-trivially only in the
matter sector, respectively, only in the BF one2. In the
light of the general results from [19], according to which
the local cohomology of the Koszul–Tate differential in
pure ghost number zero for a given gauge theory is triv-
ial in antighost numbers strictly greater than the Cauchy
order of this theory, combined with the fact that the sep-
arate Cauchy orders of the matter theory and of the BF
model are equal to one and respectively to four, we can
state that

Hmatt
k (δ|d) = 0, k > 1, (46)

HBF
k (δ|d) = 0, k > 4. (47)

By means of the above results it follows that

Hk (δ|d) = 0, k > 4 (48)

for the overall “free” theory (1) and, moreover, that
Hk (δ|d) = HBF

k (δ|d) for k = 2, 3, 4. As for H1 (δ|d),
this is the only case where the general representative of
the local cohomology of the Koszul–Tate differential in-
volves, and possibly mixes, the field/ghost and antifield

1 We recall that the local cohomology H (δ|d) is completely
trivial in both strictly positive antighost and pure ghost num-
bers (for instance, see [19], Theorem 5.4 and [20]).

2 Indeed, we can decompose δ like δ = δmatt + δBF,
where δmatt(matter variables) = δ(matter variables) and
δmatt(BF variables) = 0, respectively, δBF(matter variables) =
0 and δBF(BF variables) = δ(BF variables). According to this
decomposition, Hmatt(δ|d) and HBF(δ|d) must be understood
only like some more suggestive notation for H(δmatt|d) and
H(δBF|d) respectively.

spectra of both BF and matter sectors. It is quite reason-
able to assume that if the invariant polynomial µk, with
agh (µk) = k ≥ 4, is trivial in Hk (δ|d); then it can be
taken to be trivial also in H inv

k (δ|d):(
µk = δbk+1 + ∂µ

(k)
c

µ

, agh (µk) = k ≥ 4
)

⇒

µk = δβk+1 + ∂µ

(k)
γ

µ

, (49)

where βk+1 and
(k)
γ

µ

are invariant polynomials. [An ele-
ment of H inv

k (δ|d) is defined via an equation similar to
(45) for J → k, but with the corresponding current an
invariant polynomial.] This assumption is based on what
happens in many gauge theories. For instance, see [14–
17]. The results (48) and (49) yield the conclusion that
all the local cohomology of the Koszul–Tate differential in
the space of invariant polynomials in antighost numbers
strictly greater than four is indeed trivial:

H inv
k (δ|d) = 0, k > 4. (50)

The previous results on H (δ|d) and H inv (δ|d) in strictly
positive antighost numbers are important because they
control the obstructions to removing the antifields from
the first-order deformation. This statement is also stan-
dard material and can be shown as in [14–17]. Its proof is
mainly based on the formulas (48)–(50) and relies on the
fact that we can successively eliminate all the pieces of
antighost number strictly greater than four from the non-
integrated density of the first-order deformation by adding
only trivial terms. As a consequence, we can safely take
the first-order deformation to stop at antighost number
four (J = 4 in the expansion (36)):

a = a0 + a1 + a2 + a3 + a4, (51)

where a4 is of the form (44) and µ4 is a non-trivial element
from H inv

4 (δ|d) = H invBF
4 (δ|d).

4.1.2 Computation of the first-order deformation

After some computation, we infer that the most general,
non-trivial representative of H invBF

4 (δ|d) can be taken to
be of the type

(µ4)
µνρλ

=
(
∂U

∂ϕe
C∗µνρλ

e +
∂2U

∂ϕe∂ϕf

(
H∗[µ

e C
∗νρλ]
f + C∗[µν

e C
∗ρλ]
f

)

+
∂3U

∂ϕe∂ϕf∂ϕg
H∗[µ

e H∗ν
f C∗ρλ]

g

+
∂4U

∂ϕe∂ϕf∂ϕg∂ϕh
H∗µ

e H∗ν
f H∗ρ

g H∗λ
h

)
, (52)

where U = U(ϕa) is an arbitrary function depending only
on the undifferentiated scalar fields. We omit the proof of
this result, which is rather tedious and not illuminating,
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but observe that it is in perfect agreement with the similar
one given in [13] in the absence of BF collection indices
and also with that resulting from the Hamiltonian analysis
of the action (1) in n dimensions and reported in [12]. On
the other hand, the elements of pure ghost number equal
to four of a basis in the space of the polynomials in the
ghosts (43) are

ηaCb
µνρλ, η

aηbηcµνρλ, η
aηbηcηd, ηaµνρληbµ′ν′ρ′λ′ . (53)

Thus, the last representative from the expansion (51) is
provided by directly “gluing” (52) to the elements from
(53) by means of some appropriate functions of the scalar
fields, and hence will be expressed by

a4 =
(
∂Wab

∂ϕc
C∗µνρλ

c

+
∂2Wab

∂ϕc∂ϕd

(
H∗[µ

c C
∗νρλ]
d + C∗[µν

c C
∗ρλ]
d

)

+
∂3Wab

∂ϕc∂ϕd∂ϕe
H∗[µ

c H∗ν
d C∗ρλ]

e

+
∂4Wab

∂ϕc∂ϕd∂ϕe∂ϕf
H∗µ

c H∗ν
d H∗ρ

e H∗λ
f

)
ηaCb

µνρλ

− 1
4

(
∂M c

ab

∂ϕd
C∗µνρλ

d

+
∂2M c

ab

∂ϕd∂ϕe

(
H

∗[µ
d C∗νρλ]

e + C
∗[µν
d C∗ρλ]

e

)

+
∂3M c

ab

∂ϕd∂ϕe∂ϕf
H

∗[µ
d H∗ν

e C
∗ρλ]
f

+
∂4M c

ab

∂ϕd∂ϕe∂ϕf∂ϕg
H∗µ

d H∗ν
e H∗ρ

f H∗λ
g

)
ηaηbηcµνρλ

+
1
2
εµνρλ

((
∂Mab

∂ϕc
C∗µνρλ

c

+
∂2Mab

∂ϕc∂ϕd

(
H∗[µ

c C
∗νρλ]
d + C∗[µν

c C
∗ρλ]
d

)

+
∂3Mab

∂ϕc∂ϕd∂ϕe
H∗[µ

c H∗ν
d C∗ρλ]

e

+
∂4Mab

∂ϕc∂ϕd∂ϕe∂ϕf
H∗µ

c H∗ν
d H∗ρ

e H∗λ
f

)
ηστκς

a ηbστκς

− 1
2 · (4!)2

(
∂Mmnpq

∂ϕc
C∗µνρλ

c

+
∂2Mmnpq

∂ϕc∂ϕd

(
H∗[µ

c C
∗νρλ]
d + C∗[µν

c C
∗ρλ]
d

)

+
∂3Mmnpq

∂ϕc∂ϕd∂ϕe
H∗[µ

c H∗ν
d C∗ρλ]

e (54)

+
∂4Mmnpq

∂ϕc∂ϕd∂ϕe∂ϕf
H∗µ

c H∗ν
d H∗ρ

e H∗λ
f

)
ηmηnηpηq

)
.

In the above the functions Wab, M c
ab, M

ab and Mmnpq de-
pend only on the undifferentiated scalar fields. Meanwhile,
M c

ab together withMmnpq are antisymmetric in their lower
indices due to the anticommutation among the ghosts ηa,

while Mab are symmetric as a consequence of the com-
mutation among the ghosts for ghosts ηµνρλ

a . The factors
−1/4, +1/2 and respectively −1/2 · (4!)2 in front of the
last three pieces were added for further convenience.

By computing the action of δ on a4 and by taking into
account the relations (23)–(26), it follows that the solution
a3 of (38) for J = 4 is precisely given by

a3 =
(
∂Wab

∂ϕc
C∗µνρ

c +
∂2Wab

∂ϕc∂ϕd
H∗[µ

c C
∗νρ]
d

+
∂3Wab

∂ϕc∂ϕd∂ϕe
H∗µ

c H∗ν
d H∗ρ

e

)(−ηaCb
µνρ + 4AaλCb

µνρλ

)
+ 2

(
6
(
∂Wab

∂ϕc
C∗µν

c +
∂2Wab

∂ϕc∂ϕd
H∗µ

c H∗ν
d

)
B∗aρλ

+ 4
∂Wab

∂ϕc
H∗µ

c η∗aνρλ +Wabη
∗aµνρλ

)
Cb

µνρλ

+
1
2

(
∂M c

ab

∂ϕd
C∗µνρ

d +
∂2M c

ab

∂ϕd∂ϕe
H

∗[µ
d C∗νρ]

e

+
∂3M c

ab

∂ϕd∂ϕe∂ϕf
H∗µ

d H∗ν
e H∗ρ

f

)

×
(

1
2
ηaηbηcµνρ − 4Aaληbηcµνρλ

)

−
(

6
(
∂M c

ab

∂ϕd
C∗µν

d +
∂2M c

ab

∂ϕd∂ϕe
H∗µ

d H∗ν
e

)
B∗aρλ

+ 4
∂M c

ab

∂ϕd
H∗µ

d η∗aνρλ +M c
abη

∗aµνρλ

)
ηbηcµνρλ

− εµνρλ

(
∂Mab

∂ϕc
C∗στκ

c +
∂2Mab

∂ϕc∂ϕd
H∗[σ

c C
∗τκ]
d

+
∂3Mab

∂ϕc∂ϕd∂ϕe
H∗σ

c H∗τ
d H∗κ

e

)
ηaστκη

µνρλ
b

− εµνρλ

(4!)2

(
4
(
∂Mmnpq

∂ϕc
C∗µνρ

c +
∂2Mmnpq

∂ϕc∂ϕd
H∗[µ

c C
∗νρ]
d

+
∂3Mmnpq

∂ϕc∂ϕd∂ϕe
H∗µ

c H∗ν
d H∗ρ

e

)
Amλ (55)

+ 12
(
∂Mmnpq

∂ϕc
C∗µν

c +
∂2Mmnpq

∂ϕc∂ϕd
H∗µ

c H∗ν
d

)
B∗mρλ

+ 8
∂Mmnpq

∂ϕc
H∗µ

c η∗mνρλ + 2Mmnpqη
∗mµνρλ

)
ηnηpηq.

By means of (39) for k = 3

δa3 + γa2 = ∂µ

(2)
m

µ

, (56)

the solution (55) and the definitions (23)–(26) lead to

a2 =
(
∂Wab

∂ϕc
C∗µν

c +
∂2Wab

∂ϕc∂ϕd
H∗µ

c H∗ν
d

)
× (

ηaCb
µν − 3AaρCb

µνρ

)
− 2

(
3
∂Wab

∂ϕc
H∗µ

c B∗aνρ +Wabη
∗aµνρ

)
Cb

µνρ

− 1
2

(
∂M c

ab

∂ϕd
C∗µν

d +
∂2M c

ab

∂ϕd∂ϕe
H∗µ

d H∗ν
e

)
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×
(

1
2
ηaηbBcµν − 3Aaρηbηcµνρ

)

+
(

3
∂M c

ab

∂ϕd
H∗µ

d B∗aνρ +M c
abη

∗aµνρ

)
ηbηcµνρ

+
1
2

(
−∂M c

ab

∂ϕd
H∗µ

d A∗
cµ +M c

abη
∗
c

)
ηaηb

+
(

3
(
∂M c

ab

∂ϕd
C∗µν

d +
∂2M c

ab

∂ϕd∂ϕe
H∗µ

d H∗ν
e

)
Aaρ

+ 12
∂M c

ab

∂ϕd
H∗µ

d B∗aνρ + 4M c
abη

∗aµνρ

)
Abληcµνρλ

− 6M c
abB

∗a
µνB

∗b
ρλη

µνρλ
c

+
9
2
εµνρλ

(
∂Mab

∂ϕd
C∗

dµν +
∂2Mab

∂ϕd∂ϕe
H∗

dµH
∗
eν

)
ηaρστη

στ
bλ

+ εµνρλ

((
∂Mab

∂ϕd
C∗στ

d +
∂2Mab

∂ϕd∂ϕe
H∗σ

d H∗τ
e

)
Bbστ

+ 2
∂Mab

∂ϕd
H∗σ

d A∗
bσ − 2Mabη∗

b

)
ηµνρλ

a

+
3εµνρλ

(4!)2

(
6
(
∂Mmnpq

∂ϕd
C∗µν

d +
∂2Mmnpq

∂ϕd∂ϕe
H∗µ

d H∗ν
e

)

× AmρAnλ

+ 24
∂Mmnpq

∂ϕd
H∗µ

d B∗mνρAnλ + 8Mmnpqη
∗mµνρAnλ

− 12MmnpqB
∗mµνB∗nρλ

)
ηpηq. (57)

Next, we investigate (39) for k = 2:

δa2 + γa1 = ∂µ

(1)
m

µ

, (58)

which, combined with (57), provide a1:

a1 =
∂Wab

∂ϕc
H∗µ

c
(−ηaHb

µ + 2AaνCb
µν

)
+ Wab

(
2B∗a

µνC
bµν − ϕ∗aηb

)
− ∂M c

ab

∂ϕd
H∗µ

d Aaν

(
ηbBcµν +

3
2
Abρηcµνρ

)
− M c

ab

(
B∗a

µνη
bBµν

c +Aa
µη

bA∗µ
c + 3B∗a

µνA
b
ρη

µνρ
c

)
+ 2ενρσλ

(
∂Mab

∂ϕc
H∗

cµB
µν
a −MabA∗ν

a

)
ηρσλ

b (59)

+
εµνρλ

4!

(
∂Mmnpq

∂ϕc
H∗

cµA
m
ν + 3MmnpqB

∗m
µν

)
An

ρA
p
λη

q + a1,

where

ā1 =
(
B∗a

µνT
µν
ab

([
ω∆
])

+A∗a
µ T̃µ

ab

([
ω∆
])

+ ϕ∗aTab

([
ω∆
])

+ H∗µ
a T a

µb

([
ω∆
])

+ y∗
i T̄

i
b

([
ω∆
]))

ηb

≡ λb

([
ω∆
])
ηb, (60)

and ω∆ is explained in (41). In order to produce a bosonic
ā1, as required by the standard rules of the BRST for-
malism, the gauge invariant functions Tµν

ab , T̃µ
ab, Tab and

T a
µb must be bosonic, while the Grassmann parity of T̄ i

b

should be equal to εi for each b = 1, N . The term (60)
added in the right-hand side of (59) appears to be like the
general solution to the “homogeneous” equation γā1 = 0
and takes into account the fact that both the BF and the
matter theories participate in the local cohomology of the
Koszul–Tate differential in antighost number one. Its form
is given by the general solution (44) for J = 1. Such terms
correspond to ā2 = 0 and thus they do not modify either
the gauge algebra or the reducibility functions, but only
the gauge transformations of the interacting theory. We
emphasize that the solutions a3 and a2 obtained previ-
ously also include the general ones, corresponding to the
“homogeneous” equations γā3 = 0 and γā2 = 0. In order
to simplify the exposition we avoided the discussion re-
garding the selection procedure of these solutions such as
to comply with obtaining some consistent a2 and a1. It is
however interesting to note that this procedure allows no
new functions of the scalar fields beside Wab, M c

ab, M
ab

and Mabcd to enter a3 or a2.
In order to solve (39) at antighost number zero,

δa1 + γa0 = ∂µ (0)
mµ, (61)

whose solution is nothing but the deformed Lagrangian at
order one in g, from (59) we observe that

δa1 = −γ
[
−WabA

aµHb
µ +

1
2
M c

abA
a
µA

b
νB

µν
c

+
1
2
εµνρλ

(
MabBaµνBbρλ − 1

2 · 4!
MabcdA

a
µA

b
νA

c
ρA

d
λ

)]
+ ∂µ

(
Wab

(−ηaHb
µ + 2AaνCb

µν

)
− M c

abA
aν

(
ηbBcµν +

3
2
Abρηcµνρ

)

+ 2ενρσλMabBaµνηbρσλ +
1
4!
εµνρλMabcdA

aνAbρAcληd

)
+ δa1. (62)

Thus, the consistency of the deformation procedure at or-
der one in the coupling constant requires that δā1 must
independently be γ-exact modulo d

δā1 + γā0 = ∂µj̄
µ. (63)

At the first sight it seems that ā1 is not an essential in-
gredient of the deformation procedure since in its absence
(61) would still allow solutions for a0, as it can be observed
from (62) in which we set ā1 = 0. However, it is important
to note that in its absence there are no couplings of the
matter fields to the BF sector. Indeed, the results (48) and
Hk (δ|d) = HBF

k (δ|d) for k = 2, 3, 4 imply that the earli-
est step where the matter generators may be brought in
during the deformation process is given by the solutions of
the “homogeneous” equation γā1 = 0 at antighost num-
ber one. Since the scope of this paper is to analyze the
structure of possible interactions between the matter and
the BF fields, in what follows we focus on the conditions
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that should be satisfied such that ā1 indeed furnishes a
consistent ā0.

More precisely, we determine the allowed form of the
functions Tµν

ab , T̃µ
ab, Tab, T a

µb and T̄ i
b in (60) such that (63)

is obeyed. Recalling the definitions (18)–(22), it follows
that

δā1 = − (δλb) ηb. (64)

In the meantime, from the definitions (24) and the first
two relations in (25) we read that (63) possesses solutions
if and only if there exist some bosonic, γ-invariant currents
j̄µ
b with both pure ghost and antighost numbers equal to

zero,

γj̄µ
b = 0, pgh (j̄µ

b ) = 0 = agh (j̄µ
b ) , ε (j̄µ

b ) = 0, (65)

such that
−δλb = ∂µj̄

µ
b . (66)

Analyzing the expression of λb from (60), after some com-
putation we find that a necessary condition for (66) to
hold is

Tµν
ab = 0, T̃µ

ab = 0, Tab = 0. (67)

Substituting the partial solutions (67) back into (66), the
latter becomes

(∂µϕa)T a
µb

([
ω∆
])

+ (−)εi
δLL0

δyi
T̄ i

b

([
ω∆
])

= ∂µj̄
µ
b . (68)

A practical manner of exhibiting solutions to (68), and
hence, by virtue of the above discussion, of introducing
couplings between the BF and matter theories, is to sup-
pose that there exist some local functions T i

a involving
only the matter fields and their derivatives, whose Grass-
mann parities are εi, such that

(−)εi
δLL0

δyi
T i

a

([
yi
])

= ∂µj
µ
a

([
yi
])
. (69)

Here, jµ
a are some bosonic, local currents that depend only

on the purely matter field spectrum. The last relation
is nothing but Noether’s theorem expressing the appear-
ance of the on-shell conserved currents jµ

a

([
yi
])

(on-shell
means here on the stationary surface of field equations for
the purely matter theory) deriving from the invariance of
the Lagrangian action of the matter fields under the rigid
symmetries

∆yi = T i
a

([
yi
])
ξa, (70)

with ξa some constant, bosonic parameters. From now on
we work under the hypothesis that the matter theory in-
deed displays such rigid symmetries.

Equation (69) may be rewritten in terms of the Koszul–
Tate differential as

∂µj
µ
a = δ

(−y∗
i T

i
a

) ≡ δσa, (71)

and it correlates the rigid symmetries (70) to certain co-
homological classes from the space H1 (δ|d). Explicitly,
it shows that some global symmetries (materialized in
the conserved currents jµ

a ) define some elements σa from
H1 (δ|d), i.e., some elements of antighost number equal to

one that are δ-closed modulo d. A global symmetry is said
to be trivial if the corresponding σa are in a trivial class
of H1 (δ|d), hence if they are δ-exact modulo d

σa = δρa + ∂µc
µ
a , agh (ρa) = 2, agh (cµa) = 1. (72)

The currents associated with a trivial global symmetry are
trivial (see the first reference from [7]), and we assume that
this is not the case here.

Inserting (69) in (68), we find that the left-hand side
of (68) reduces to a total derivative if and only if

T̄ i
b = T i

a

([
yi
])
Ua

b (ϕ) , T a
µb = jcµ

([
yi
]) ∂U c

b (ϕ)
∂ϕa

, (73)

where Ua
b (ϕ) are some arbitrary functions of the undif-

ferentiated scalar fields. In this case, the bar current from
(68) is related to the purely matter one via

j̄µ
b = jµ

a

([
yi
])
Ua

b (ϕ) . (74)

Using the solutions (67) and (73) in (60), we completely
determine ā1 in the form

ā1 = y∗
i T

i
a

([
yi
])
Ua

b (ϕ) ηb +H∗µ
a jcµ

([
yi
]) ∂U c

b (ϕ)
∂ϕa

ηb.

(75)
With ā1 at hand, from (60) we find that the solution to
(63) is

ā0 = jµ
a

([
yi
])
Ua

b (ϕ)Ab
µ, (76)

which, correlated with (62), enables us to write the full
antighost number zero component in the first-order defor-
mation like

a0 = jµ
a

([
yi
])
Ua

b (ϕ)Ab
µ −Wab (ϕ)AaµHb

µ

+
1
2
M c

ab (ϕ)Aa
µA

b
νB

µν
c

+
1
2
εµνρλ

(
Mab (ϕ)BaµνBbρλ

− 1
2 · 4!

Mabcd (ϕ)Aa
µA

b
νA

c
ρA

d
λ

)
. (77)

The basic conclusion of the above discussion is that
the appearance of consistent couplings (at order one in
the deformation parameter) of the matter fields to the
BF ones is obtained under the hypothesis that the matter
theory is invariant under some (non-trivial) bosonic global
transformations of the type (70), that result, via Noether’s
theorem (69), in the (non-trivial) conserved currents jµ

a .
It is essential that the number of rigid symmetries is equal
to the number of BF fields from the collection (N).

Putting together the formulas (54), (55), (57), (59),
(75) and (77), we conclude that the first-order deformation
of the solution to the master equation for the model under
study can be written in the form

S1 =
∫

d4x

((
∂Wab

∂ϕc
C∗µνρλ

c

+
∂2Wab

∂ϕc∂ϕd

(
H∗[µ

c C
∗νρλ]
d + C∗[µν

c C
∗ρλ]
d

)



C. Bizdadea et al.: Couplings of a collection of BF models to matter theories 409

+
∂3Wab

∂ϕc∂ϕd∂ϕe
H∗[µ

c H∗ν
d C∗ρλ]

e

+
∂4Wab

∂ϕc∂ϕd∂ϕe∂ϕf
H∗µ

c H∗ν
d H∗ρ

e H∗λ
f

)
ηaCb

µνρλ

− 1
4

(
∂M c

ab

∂ϕd
C∗µνρλ

d

+
∂2M c

ab

∂ϕd∂ϕe

(
H

∗[µ
d C∗νρλ]

e + C
∗[µν
d C∗ρλ]

e

)

+
∂3M c

ab

∂ϕd∂ϕe∂ϕf
H

∗[µ
d H∗ν

e C
∗ρλ]
f

+
∂4M c

ab

∂ϕd∂ϕe∂ϕf∂ϕg
H∗µ

d H∗ν
e H∗ρ

f H∗λ
g

)
ηaηbηcµνρλ

+
1
2
εµνρλ

((
∂Mab

∂ϕc
C∗µνρλ

c

+
∂2Mab

∂ϕc∂ϕd

(
H∗[µ

c C
∗νρλ]
d + C∗[µν

c C
∗ρλ]
d

)

+
∂3Mab

∂ϕc∂ϕd∂ϕe
H∗[µ

c H∗ν
d C∗ρλ]

e

+
∂4Mab

∂ϕc∂ϕd∂ϕe∂ϕf
H∗µ

c H∗ν
d H∗ρ

e H∗λ
f

)
ηστκς

a ηbστκς

− 1
2 · (4!)2

(
∂Mmnpq

∂ϕc
C∗µνρλ

c

+
∂2Mmnpq

∂ϕc∂ϕd

(
H∗[µ

c C
∗νρλ]
d + C∗[µν

c C
∗ρλ]
d

)

+
∂3Mmnpq

∂ϕc∂ϕd∂ϕe
H∗[µ

c H∗ν
d C∗ρλ]

e

+
∂4Mmnpq

∂ϕc∂ϕd∂ϕe∂ϕf
H∗µ

c H∗ν
d H∗ρ

e H∗λ
f

)
ηmηnηpηq

)

+
(
∂Wab

∂ϕc
C∗µνρ

c +
∂2Wab

∂ϕc∂ϕd
H∗[µ

c C
∗νρ]
d

+
∂3Wab

∂ϕc∂ϕd∂ϕe
H∗µ

c H∗ν
d H∗ρ

e

)
× (−ηaCb

µνρ + 4AaλCb
µνρλ

)
+ 2

(
6
(
∂Wab

∂ϕc
C∗µν

c +
∂2Wab

∂ϕc∂ϕd
H∗µ

c H∗ν
d

)
B∗aρλ

+ 4
∂Wab

∂ϕc
H∗µ

c η∗aνρλ +Wabη
∗aµνρλ

)
Cb

µνρλ

+
1
2

(
∂M c

ab

∂ϕd
C∗µνρ

d

+
∂2M c

ab

∂ϕd∂ϕe
H

∗[µ
d C∗νρ]

e +
∂3M c

ab

∂ϕd∂ϕe∂ϕf
H∗µ

d H∗ν
e H∗ρ

f

)

×
(

1
2
ηaηbηcµνρ − 4Aaληbηcµνρλ

)

−
(

6
(
∂M c

ab

∂ϕd
C∗µν

d +
∂2M c

ab

∂ϕd∂ϕe
H∗µ

d H∗ν
e

)
B∗aρλ

+ 4
∂M c

ab

∂ϕd
H∗µ

d η∗aνρλ +M c
abη

∗aµνρλ

)
ηbηcµνρλ

− εµνρλ

(
∂Mab

∂ϕc
C∗στκ

c +
∂2Mab

∂ϕc∂ϕd
H∗[σ

c C
∗τκ]
d

+
∂3Mab

∂ϕc∂ϕd∂ϕe
H∗σ

c H∗τ
d H∗κ

e

)
ηaστκη

µνρλ
b

− εµνρλ

(4!)2

(
4
(
∂Mmnpq

∂ϕc
C∗µνρ

c +
∂2Mmnpq

∂ϕc∂ϕd
H∗[µ

c C
∗νρ]
d

+
∂3Mmnpq

∂ϕc∂ϕd∂ϕe
H∗µ

c H∗ν
d H∗ρ

e

)
Amλ

+ 12
(
∂Mmnpq

∂ϕc
C∗µν

c +
∂2Mmnpq

∂ϕc∂ϕd
H∗µ

c H∗ν
d

)
B∗mρλ

+ 8
∂Mmnpq

∂ϕc
H∗µ

c η∗mνρλ + 2Mmnpqη
∗mµνρλ

)
ηnηpηq

+
(
∂Wab

∂ϕc
C∗µν

c +
∂2Wab

∂ϕc∂ϕd
H∗µ

c H∗ν
d

)
× (

ηaCb
µν − 3AaρCb

µνρ

)
− 2

(
3
∂Wab

∂ϕc
H∗µ

c B∗aνρ +Wabη
∗aµνρ

)
Cb

µνρ

− 1
2

(
∂M c

ab

∂ϕd
C∗µν

d +
∂2M c

ab

∂ϕd∂ϕe
H∗µ

d H∗ν
e

)

×
(

1
2
ηaηbBcµν − 3Aaρηbηcµνρ

)

+
(

3
∂M c

ab

∂ϕd
H∗µ

d B∗aνρ +M c
abη

∗aµνρ

)
ηbηcµνρ

+
1
2

(
−∂M c

ab

∂ϕd
H∗µ

d A∗
cµ +M c

abη
∗
c

)
ηaηb

+
(

3
(
∂M c

ab

∂ϕd
C∗µν

d +
∂2M c

ab

∂ϕd∂ϕe
H∗µ

d H∗ν
e

)
Aaρ

+ 12
∂M c

ab

∂ϕd
H∗µ

d B∗aνρ + 4M c
abη

∗aµνρ)Abληcµνρλ

− 6M c
abB

∗a
µνB

∗b
ρλη

µνρλ
c

+
9
2
εµνρλ

(
∂Mab

∂ϕd
C∗

dµν +
∂2Mab

∂ϕd∂ϕe
H∗

dµH
∗
eν

)
ηaρστη

στ
bλ

+ εµνρλ

((
∂Mab

∂ϕd
C∗στ

d +
∂2Mab

∂ϕd∂ϕe
H∗σ

d H∗τ
e

)
Bbστ

+ 2
∂Mab

∂ϕd
H∗σ

d A∗
bσ − 2Mabη∗

b

)
ηµνρλ

a

+
3εµνρλ

(4!)2

(
6
(
∂Mmnpq

∂ϕd
C∗µν

d +
∂2Mmnpq

∂ϕd∂ϕe
H∗µ

d H∗ν
e

)

× AmρAnλ

+ 24
∂Mmnpq

∂ϕd
H∗µ

d B∗mνρAnλ

+ 8Mmnpqη
∗mµνρAnλ − 12MmnpqB

∗mµνB∗nρλ
)
ηpηq

+
∂Wab

∂ϕc
H∗µ

c
(−ηaHb

µ + 2AaνCb
µν

)
+ Wab

(
2B∗a

µνC
bµν − ϕ∗aηb

)
− ∂M c

ab

∂ϕd
H∗µ

d Aaν

(
ηbBcµν +

3
2
Abρηcµνρ

)
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− M c
ab

(
B∗a

µνη
bBµν

c +Aa
µη

bA∗µ
c + 3B∗a

µνA
b
ρη

µνρ
c

)
+ 2ενρστ

(
∂Mab

∂ϕc
H∗

cµB
µν
a −MabA∗ν

a

)
ηρστ

b

+
εµνρλ

4!

(
∂Mmnpq

∂ϕc
H∗

cµA
m
ν + 3MmnpqB

∗m
µν

)
An

ρA
p
λη

q

+ y∗
i T

i
aU

a
b η

b +H∗µ
m jaµ

∂Ua
b

∂ϕm
ηb −WabA

aµHb
µ

+
1
2
M c

abA
a
µA

b
νB

µν
c + jµ

aU
a
b A

b
µ (78)

+
εµνρλ

2

(
MabBaµνBbρλ − 1

2 · 4!
MabcdA

a
µA

b
νA

c
ρA

d
λ

))
.

It is by construction a s-cocycle of ghost number zero,
such that S + gS1 is solution to the master equation (31)
up to order g.

4.2 Higher-order deformations

It is clear from (78) that S1 strongly depends on the struc-
ture of the matter theory. The only (reasonable) assump-
tions made so far on the “free” matter theory are that
its Lagrangian density L0

([
yi
])

is at most second order
in the derivatives of yi and that it separately describes a
“normal” theory of Cauchy order equal to one. Until now
we did not restrict in any way the derivative order of the
interacting Lagrangian density, given at the first order in
the coupling constant by a0 as in (77). However, as an-
nounced in the beginning of this section, we will ask that
the interactions preserve the differential order with respect
to the “free” field equations. Given the first-order differ-
ential behavior of the BF field equations resulting from
the “free” action (1), it follows that each term in a0 must
be restricted to have at most one spacetime derivative.
The quantities in a0 that may contain spacetime deriva-
tives of the fields are proportional to jµ

a

([
yi
])

, and hence
we must ask that the conserved matter currents have no
more than one derivative. In view of Noether’s theorem
(69) it is then sufficient to take the generators T i

a of the
rigid symmetries (70) to be polynomials in the undiffer-
entiated matter fields (or even infinite series in the subset
of commuting such fields). In order to fix the ideas and
manifestly ensure that the Grassmann parity of T i

a is εi

from now on we consider the case where the generators of
the rigid symmetries (70) are linear in the matter fields,
i.e.

T i
a = (Ta)i

j y
j , (79)

with (Ta)i
j denoting the components of some constant ma-

trices Ta. Consequently, we obtain that the derivative or-
der of jµ

a is less than that of the matter Lagrangian density
by one unit, namely it may be either zero or one.

Next, we discuss the higher-order deformation equa-
tions (33), (34) etc. Initially, we analyze under what con-
ditions the first-order deformation (78) is consistent at
the second order in the coupling constant, namely (33)
holds. We will see that these conditions impose various
restrictions on the functions entering (78), so on the one

hand they fix the expression of S1 itself and, on the other
hand, allow us to predict whether non-trivial second- and
possibly higher-order deformations of the solution to the
master equation appear3. The second-order deformation
is governed by (33), which, if we maintain the notation
from (30) and consider that (S1, S1) =

∫
d4x∆, takes the

local form

∆ = −1
2
sb+ ∂µθµ. (80)

At this point it is necessary to make some specifications.
It is clear that the expression of ∆ depends, beside the
BF sector, also on the (derivative) structure of the corre-
sponding matter currents jµ

a . This is why we will approach
distinctly the situation where the matter currents display
no derivatives from the case where the derivative order of
these currents is equal to one.

Assuming that the matter currents have no derivatives
(or, equivalently, that the matter Lagrangian density is
first-order derivative), with the help of (78) in which we
set (79) we infer that

∆ = Kabctabc +Kabc
d

∂tabc

∂ϕd
+Kabc

de

∂2tabc

∂ϕd∂ϕe

+ Kabc
def

∂3tabc

∂ϕd∂ϕe∂ϕf
+Kabc

defg

∂4tabc

∂ϕd∂ϕe∂ϕf∂ϕg
+ Uabc

d tdabc

+ Uabc
d,e

∂tdabc

∂ϕe
+ Uabc

d,ef

∂2tdabc

∂ϕe∂ϕf
+ Uabc

d,efg

∂3tdabc

∂ϕe∂ϕf∂ϕg

+ Uabc
d,efgh

∂4tdabc

∂ϕe∂ϕf∂ϕg∂ϕh
+Kabcdf tabcdf

+ Kabcdf
e

∂tabcdf

∂ϕe
+Kabcdf

eg

∂2tabcdf

∂ϕe∂ϕg
+Kabcdf

egh

∂3tabcdf

∂ϕe∂ϕg∂ϕh

+ Kabcdf
eghl

∂4tabcdf

∂ϕe∂ϕg∂ϕh∂ϕl
+Ka

b t
b
a +Ka

b,c

∂tba
∂ϕc

+ Ka
b,cd

∂2tba
∂ϕc∂ϕd

+Ka
b,cde

∂3tba
∂ϕc∂ϕd∂ϕe

+ Ka
b,cdef

∂4tba
∂ϕc∂ϕd∂ϕe∂ϕf

+Kc
abt

ab
c +Kc

ab,d

∂tab
c

∂ϕd

+ Kc
ab,de

∂2tab
c

∂ϕd∂ϕe
+Kc

ab,def

∂3tab
c

∂ϕd∂ϕe∂ϕf

+ Kc
ab,defg

∂4tab
c

∂ϕd∂ϕe∂ϕf∂ϕg
+ ∆̄

≡ Π + ∆̄, (81)

where ∆̄ is responsible for the occurrence of the matter
sector and its expression is

∆̄ = −4εµνρλ

3 Strictly speaking, we should have added to (78) also the
solutions to the equation γa′

0 = ∂µτµ at antighost number
zero. For the lack of simplicity we have omitted such solutions
since their consistency can be shown to enforce their triviality,
independently of the consistency equation for (78), which is
further discussed.
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×
((

H∗σ
m jaσ

∂
(
Ua

eM
eb
)

∂ϕm
+ y∗

i (Ta)i
j y

jUa
eM

eb

)
ηµνρλ

b

+ jµ
aU

a
eM

ebηνρλ
b

)
+ y∗

i

(
(Ta)i

j

(
Ua

e

∂Wbc

∂ϕe
+Web

∂Ua
c

∂ϕe
−Wec

∂Ua
b

∂ϕe

)

+ [Td, Te]
i
j U

d
b U

e
c

)
yjηbηc

+ H∗
mµ

(
jµ
a

∂

∂ϕm

(
Ua

e

∂Wbc

∂ϕe
+Web

∂Ua
c

∂ϕe
−Wec

∂Ua
b

∂ϕe

)

+
δRjµ

a

δyi
(Te)

i
j y

j

(
∂Ua

b

∂ϕm
Ue

c − ∂Ua
c

∂ϕm
Ue

b

))
ηbηc

+ 2
(
jµ
a

(
Ua

e

∂Wbc

∂ϕe
+Web

∂Ua
c

∂ϕe
−Wec

∂Ua
b

∂ϕe

)

+
δRjµ

a

δyi
(Te)

i
j y

jUe
cU

a
b

)
Ab

µη
c. (82)

The form of the t’s involved in (81) reads

tabc = WecM
c
ab +Wea

∂Wbc

∂ϕe
+Web

∂Wca

∂ϕe
, (83)

tdabc = We[a

∂Md
bc]

∂ϕe
+Md

e[aM
e
bc] +MdeMeabc, (84)

tabcdf = We[a
∂Mbcdf ]

∂ϕe
+Me[abcM

e
df ], (85)

tba = M beWea, (86)

tbc
a = Wea

∂M bc

∂ϕe
+M (b

eaM
c)e, (87)

while the remaining objects, of the type K and U , can be
found in Appendix 6. The notation (bc · · · ) signifies com-
plete symmetrization with respect to the indices between
parentheses such as to include all the independent terms
only once and without normalization factors. We recall
that the expression of ∆̄ from (82) was obtained under the
assumption that the currents jµ

a exhibit no derivatives.
In the complementary situation, where the matter cur-

rents do contain derivatives (which is the same as assum-
ing that the matter Lagrangian density is second-order
derivative), we find that the non-integrated density of
(S1, S1) =

∫
d4x∆′ can be written as

∆′ = ∆+ Λ ≡ Π + ∆̄+ Λ, (88)

where ∆ is given in (81) and Λ contains derivatives, in-
volves both the BF and matter sectors and depends on the
concrete form of jµ

a . The general expression of Λ is never-
theless not illuminating in the sequel. Since ∆′ includes ∆,
it is enough to analyze the consistency of the first-order
deformation using directly the former quantity. However,
when relevant differences between the cases where the cur-
rents do or do not contain derivatives arise, they will be
clearly emphasized. There are two main types of terms in
the right-hand side of (88):
(i) the first kind involves only the BF sector and was gener-
ically denoted by Π;

(ii) the second variety combines the matter and the BF
spectra and is designated by ∆̄+Λ, with ∆̄ given in (82).
Due to their different nature, Π and ∆̄ + Λ must sepa-
rately be s-boundaries modulo d, i.e. each of them has to
be written in a form similar to the right-hand side of (80).

None of the elements of the type (i) can be written as in
the right-hand side of (80) because none of them contains
spacetime derivatives, as does the action of s on all fields,
ghosts and antifields from the BF sector. Thereby, tabc,
tdabc, tabcdf , tba and tbc

a must vanish:

tabc = 0, tdabc = 0, tabcdf = 0, tba = 0, tbc
a = 0. (89)

Using the expressions (83)–(87), we see that the solution
to (89) is

M c
ab =

∂Wab

∂ϕc
, Mabcd = fe[ab

∂Wcd]

∂ϕe
, Mab = 0, (90)

where the functions Wab (which are antisymmetric now
due to the first relation in (90) and to the established
antisymmetry of M c

ab) are restricted to satisfy the identity

We[a
∂Wbc]

∂ϕe
= 0, (91)

and fabc are arbitrary constants, completely antisymmet-
ric in their indices.

Because of (90), we find that ∆′ given by (88) reduces
only to components of the kind (ii):

∆′ = y∗
i

(
(Ta)i

j

(
Ua

e

∂Wbc

∂ϕe
+Web

∂Ua
c

∂ϕe
−Wec

∂Ua
b

∂ϕe

)

+ [Td, Te]
i
j U

d
b U

e
c

)
yjηbηc

+ H∗
mµ

(
jµ
a

∂

∂ϕm

(
Ua

e

∂Wbc

∂ϕe
+Web

∂Ua
c

∂ϕe
−Wec

∂Ua
b

∂ϕe

)

+
δRjµ

a

δyi
(Te)

i
j y

j

(
∂Ua

b

∂ϕm
Ue

c − ∂Ua
c

∂ϕm
Ue

b

))
ηbηc

+ 2
(
jµ
a

(
Ua

e

∂Wbc

∂ϕe
+Web

∂Ua
c

∂ϕe
−Wec

∂Ua
b

∂ϕe

)

+
δRjµ

a

δyi
(Te)

i
j y

jUe
cU

a
b

)
Ab

µη
c + Λ. (92)

We observe that the term from (92) proportional to y∗
i

cannot be written in a s-exact modulo d form for the same
reason as before. In view of this, we impose that(

Ua
e

∂Wbc

∂ϕe
+Web

∂Ua
c

∂ϕe
−Wec

∂Ua
b

∂ϕe

)
(Ta)i

j

+ [Td, Te]
i
j U

d
b U

e
c = 0. (93)

There are two kinds of solutions to the system (93).
The first one (to be called “type I solution”) is

Ua
b = kaeWeb, [Ta, Tb] = 0, (94)

and it does not impose further constraints on the functions
Wab, but merely restricts the matrices Ta to be commu-
tative (the second relation in (94)). In (94) kae are some
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constants. Due to the identities (91), the antisymmetric
functions Wab can be viewed as the two-tensor on a Pois-
son manifold with the dynamical scalar fields taken as
local coordinates on the target space. The second one (to
be named “type II solution”) reads

Wab = f̄c
abϕc + Fab, (95)

Ma
bc = f̄a

bc, (96)
Ua

b = δa
b , (97)

[Ta, Tb] = −f̄c
abTc, (98)

and it restricts the functions Wab to be at most linear in
the scalar fields. In the above, f̄c

ab and Fab are some con-
stants, antisymmetric in their lower indices. As a conse-
quence of the identities (91), we find that these constants
are further subject to the conditions

f̄d
e[af̄

e
bc] = 0, Fe[af̄

e
bc] = 0. (99)

We can thus interpret f̄c
ab like the structure constants

of a certain Lie algebra L (G), where by G we denoted
the unique (since the Lie algebra is by hypothesis finite-
dimensional) connected, simply-connected Lie group hav-
ing this algebra as its Lie algebra. Then, according to (98),
the matrices Ta of elements (Ta)i

k can be viewed as a basis
of infinitesimal generators of an arbitrary linear represen-
tation of dimension I (the number of matter fields) of
L (G). With these two types of solutions at hand, in the
sequel we analyze the existence of higher-order deforma-
tions of the solution to the master equation.

4.2.1 Type I solutions

Substituting (94) in (92) we obtain

(S1, S1)

=
∫

d4x

(
2
δRjµ

a

δyi
(Tb)

i
j y

jkamkbnWncη
c

× (
WmdA

d
µ +H∗

eµ

∂Wmd

∂ϕe
ηd

)
+ ΛI

)
, (100)

where ΛI means Λ restricted to the type I solutions. Two
major situations met in practical applications deserve spe-
cial attention.
I.a. Initially, we consider the case where the matter cur-
rents are invariant under the gauge version of the genuine
rigid symmetries (70),

δRjµ
a

δyi
(Tb)

i
j y

j = 0. (101)

It is obvious that if the matter currents jµ
a contain deriva-

tives, then they cannot be invariant under the gauge ver-
sion of the rigid symmetries (70). As a consequence, the
formula (101) might hold only if these currents involve no
derivatives, in which situation ΛI vanishes. Then, from
(100) we infer that (S1, S1) = 0, and so we can take

S2 = 0, and, in fact, Sk = 0 for all k ≥ 2. As a con-
sequence, the deformed solution to the master equation
that is consistent to all orders in the coupling constant re-
sults in this case from (78) where we set (79), (90) and
(94), and reads

S̄(I.a) =
∫

d4x

(
Ha

µD̂
µϕa +

1
2
Bµν

a F̂ a
µν

− g

4 · 4!
εµνρλfm[ab

∂Wcd]

∂ϕm
Aa

µA
b
νA

c
ρA

d
λ

+ L0
([
yi
])

+ gjµ
a k

aeWebA
b
µ

+ H∗µ
a

(
2
(
D̂ν
)a

b
Cb

µν + gjmµk
me ∂Web

∂ϕa
ηb

− g
∂Wbc

∂ϕa
ηbHc

µ − g
∂2Wbd

∂ϕa∂ϕc
Abν

(
ηdBcµν +

3
2
Adρηcµνρ

)

+ g
εµνρλ

4!
fc[mn

∂2Wpq]

∂ϕa∂ϕc
AmνAnρApληq

)

− B∗a
µν

(
3
(
D̂ρ

) b

a
ηµνρ

b − 2gWabC
bµν

+ g
∂Wab

∂ϕc
ηbBµν

c − g

8
εµνρλfd[ab

∂Wpq]

∂ϕd
Ab

ρA
p
λη

q

)

+ A∗µ
a

(
D̂µ

)a

b
ηb − gϕ∗aWabη

b

+ gy∗
i (Ta)i

j y
jkaeWebη

b

− C∗µν
a

(
3
(
D̂ρ
)a

b
Cb

µνρ − g
∂Wbc

∂ϕa
ηbCc

µν

− g
∂2Wbc

∂ϕa∂ϕd

(
3AbρAcληdµνρλ

−
(

1
4
ηbBdµν +

3
2
Abρηdµνρ

)
ηc

)

− 3g
4 · 4!

εµνρλfd[mn

∂2Wpq]

∂ϕa∂ϕd
AmρAnληpηq

)

+ η∗a
µνρ

(
4
(
D̂λ

) b

a
ηµνρλ

b − 2gWabC
bµνρ + g

∂Wab

∂ϕc
ηbηµνρ

c

+
g

4!
εµνρλfm[ab

∂Wpq]

∂ϕm
Ab

λη
pηq

)
+
g

2
∂Wab

∂ϕc
η∗

cη
aηb

+ gH∗µ
d H∗ν

e

(
∂2Wab

∂ϕd∂ϕe

(
ηaCb

µν − 3AaρCb
µνρ

)
+

∂3Wab

∂ϕc∂ϕd∂ϕe

×
(

3AaρAbληcµνρλ − 1
4
ηaηbBcµν +

3
2
Aaρηbηcµνρ

)

+
3

4 · 4!
εµνρλfa[mn

∂3Wpq]

∂ϕa∂ϕd∂ϕe
AmρAnληpηq

)
− 3gB∗a

µνB
∗b
ρλ

×
(

2
∂Wab

∂ϕc
ηµνρλ

c +
1

2 · 4!
εµνρλfc[ab

∂Wpq]

∂ϕc
ηpηq

)

− g

2
∂2Wab

∂ϕc∂ϕd
H∗µ

d A∗
cµη

aηb
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+ 3gH∗µ
d B∗aνρ

(
−2

∂Wab

∂ϕd
Cb

µνρ

+
∂2Wab

∂ϕc∂ϕd

(
ηbηcµνρ + 4Abληcµνρλ

)
+

1
4!
εµνρλfc[ab

∂2Wpq]

∂ϕc∂ϕd
Abληpηq

)

+ C∗µνρ
a

(
4
(
D̂λ
)a

b
Cb

µνρλ − g
∂Wbc

∂ϕa
ηbCc

µνρ

+ g
∂2Wbc

∂ϕa∂ϕd

(
1
4
ηbηcηdµνρ − 2Abληcηdµνρλ

)

− g

3! · 4!
εµνρλfc[mn

∂2Wpq]

∂ϕa∂ϕc
Amληnηpηq

)
+ gη∗aµνρλ

(
2WabC

b
µνρλ

− ∂Wab

∂ϕc
ηbηcµνρλ − 2

(4!)2
εµνρλfb[an

∂Wpq]

∂ϕb
ηnηpηq

)

+ g

(
∂2Wab

∂ϕc∂ϕd
H∗[µ

c C
∗νρ]
d +

∂3Wab

∂ϕc∂ϕd∂ϕe
H∗µ

c H∗ν
d H∗ρ

e

)
× (−ηaCb

µνρ + 4AaλCb
µνρλ

)
+ 4g

(
3
(
∂Wab

∂ϕc
C∗µν

c +
∂2Wab

∂ϕc∂ϕd
H∗µ

c H∗ν
d

)
B∗aρλ

+ 2
∂Wab

∂ϕc
H∗µ

c η∗aνρλ

)
Cb

µνρλ

+
1
2
g

(
∂3Wab

∂ϕc∂ϕd∂ϕe
H

∗[µ
d C∗νρ]

e

+
∂4Wab

∂ϕc∂ϕd∂ϕe∂ϕf
H∗µ

d H∗ν
e H∗ρ

f

)

×
(

1
2
ηaηbηcµνρ − 4Aaληbηcµνρλ

)

− 2g
(

3
(
∂2Wab

∂ϕc∂ϕd
C∗µν

d +
∂3Wab

∂ϕc∂ϕd∂ϕe
H∗µ

d H∗ν
e

)
B∗aρλ

+ 2
∂2Wab

∂ϕc∂ϕd
H∗µ

d η∗aνρλ

)
ηbηcµνρλ

− g

(4!)2
εµνρλfa[mn

(
4
(

∂3Wpq]

∂ϕa∂ϕc∂ϕd
H∗[µ

c C
∗νρ]
d

+
∂4Wpq]

∂ϕa∂ϕc∂ϕd∂ϕe
H∗µ

c H∗ν
d H∗ρ

e

)
Amλ

+ 12
(
∂2Wpq]

∂ϕa∂ϕc
C∗µν

c +
∂3Wpq]

∂ϕa∂ϕc∂ϕd
H∗µ

c H∗ν
d

)
B∗mρλ

+ 8
∂2Wpq]

∂ϕa∂ϕc
H∗µ

c η∗mνρλ

)
ηnηpηq

+ gC∗µνρλ
c

(
∂Wab

∂ϕc
ηaCb

µνρλ − 1
4
∂2Wab

∂ϕc∂ϕd
ηaηbηdµνρλ

− 1
4 · (4!)2

εµνρλfa[mn

∂2Wpq]

∂ϕa∂ϕc
ηmηnηpηq

)

+ g

(
∂2Wab

∂ϕc∂ϕd

(
H∗[µ

c C
∗νρλ]
d + C∗[µν

c C
∗ρλ]
d

)

+
∂3Wab

∂ϕc∂ϕd∂ϕe
H∗[µ

c H∗ν
d C∗ρλ]

e

+
∂4Wab

∂ϕc∂ϕd∂ϕe∂ϕf
H∗µ

c H∗ν
d H∗ρ

e H∗λ
f

)
ηaCb

µνρλ

− 1
4
g

(
∂3Wab

∂ϕc∂ϕd∂ϕe

(
H

∗[µ
d C∗νρλ]

e + C
∗[µν
d C∗ρλ]

e

)

+
∂4Wab

∂ϕc∂ϕd∂ϕe∂ϕf
H

∗[µ
d H∗ν

e C
∗ρλ]
f

+
∂5Wab

∂ϕc∂ϕd∂ϕe∂ϕf∂ϕg
H∗µ

d H∗ν
e H∗ρ

f H∗λ
g

)
ηaηbηcµνρλ

− g

4 · (4!)2
εµνρλ

× fa[mn

(
∂3Wpq]

∂ϕa∂ϕc∂ϕd

(
H∗[µ

c C
∗νρλ]
d + C∗[µν

c C
∗ρλ]
d

)

+
∂4Wpq]

∂ϕa∂ϕc∂ϕd∂ϕe
H∗[µ

c H∗ν
d C∗ρλ]

e (102)

+
∂5Wpq]

∂ϕa∂ϕc∂ϕd∂ϕe∂ϕf
H∗µ

c H∗ν
d H∗ρ

e H∗λ
f

)
ηmηnηpηq

)
,

where we used the notation

D̂µϕa = ∂µϕa + gWabA
bµ, (103)

F̂ a
µν = ∂[µA

a
ν] + g

∂Wbc

∂ϕa
Ab

µA
c
ν , (104)

(
D̂µ

)a

b
= δa

b ∂µ − g
∂Wbc

∂ϕa
Ac

µ, (105)

(
D̂µ

) a

b
= δa

b ∂µ + g
∂Wbc

∂ϕa
Ac

µ. (106)

From the full solution (102) we can extract all the infor-
mation on the resulting interacting model.

Indeed, the pieces with antighost number zero from
(102) produce the Lagrangian action of the coupled theory

S̄
(I.a)
0 =

∫
d4x

(
Ha

µD̂
µϕa +

1
2
Bµν

a F̂ a
µν

− g

4 · 4!
εµνρλfm[ab

∂Wcd]

∂ϕm
Aa

µA
b
νA

c
ρA

d
λ (107)

+ L0
([
yi
])

+ gjµ
a

(
yi
)
kaeWeb (ϕ)Ab

µ

)
.

The first three types of terms describe the self-interactions
of the BF fields. They were partially obtained by us in [12]
under the supplementary assumption that the interactions
do not break the PT invariance (which is the same with
setting fmab = 0 in (107)). Here, we dropped this require-
ment and consequently allowed the appearance of a new
vertex that is quartic in the one-forms Aa

µ. The last term
provides the couplings between the BF fields and the mat-
ter fields and can be written in the compact form gj̄µ

b A
b
µ,

where the bar current is given in (74), with the functions
Ua

b as in (94). It is interesting to remark that we have a
generalized minimal coupling, in the sense that even if it
is formally expressed like “vector fields times currents”,
however the currents are not the conserved, purely matter
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ones from (69), but the matter currents in some “back-
ground” potentials kaeWeb of scalar fields.

With the help of the elements of antighost number
equal to one present in (102) we read the generating set
of deformed gauge transformations for the action (107),
which can be obtained by detaching the antifields from
these terms and by replacing the ghosts with the corre-
sponding gauge parameters

δ̂εϕa = −gWabε
b, δ̂εA

a
µ =

(
D̂µ

)a

b
εb, (108)

δ̂εH
a
µ = 2

(
D̂ν
)a

b
εbµν + g

(
jmµk

me ∂Web

∂ϕa
− ∂Wbc

∂ϕa
Hc

µ

+
∂2Wbd

∂ϕa∂ϕc
AdνBcµν

+
1
4!
εµνρλfc[mn

∂2Wpb]

∂ϕa∂ϕc
AmνAnρApλ

)
εb

− 3
2
g
∂2Wbd

∂ϕa∂ϕc
AbνAdρεcµνρ (109)

δ̂εB
µν
a = −3

(
D̂ρ

) b

a
εµνρ
b + 2gWabε

bµν (110)

− g

(
∂Wab

∂ϕc
Bµν

c − 1
8
εµνρλfd[ac

∂Wpb]

∂ϕd
Ac

ρA
p
λ

)
εb,

δ̂εy
i = g (Ta)i

j y
jkaeWebε

b. (111)

All the gauge transformations are deformed with respect
to the free ones, (2) and (3). The striking features of the
new gauge symmetries can be synthesized by
(1) the matter fields gain gauge transformations, which
can be viewed as being obtained by gauging the rigid sym-
metries (70) with the choice (79) and by further putting
them in the same “background” potentials kaeWeb of
scalar fields;
(2) the BF one-forms Ha

µ are endowed with gauge trans-
formations that are proportional with the matter currents
and with the derivatives of the “background” potentials.
Since the deformed gauge generators depend on the fields,
in contrast to the “free” theory (1), we expect that the
corresponding gauge algebra is non-Abelian, although the
matrices Ta commute (the second relation in (94)). As it
will be seen below, this is indeed the case. Another inter-
esting observation is that the deformed field strengths and
gauge transformations of the one-forms Aa

µ take general-
ized Yang–Mills forms, with the usual structure constants
replaced by the derivatives of the “background” poten-
tials (see (104) and the second relation in (108), with the
corresponding “covariant derivatives” as in (105)).

The pieces of antighost number two are known to
describe the deformed gauge algebra and new first-order
reducibility relations. They belong to four distinct cate-
gories. Firstly, those linear in the antifields of the ghosts
and quadratic in the ghosts with the pure ghost number
equal to one contain the structure functions correspond-
ing to the commutators among the gauge transformations
(108)–(111). Secondly, the presence of elements which are
simultaneously quadratic in the antifields of the original
fields as well as in the ghosts with the pure ghost number

equal to one shows that the gauge transformations (108)–
(111) only close on-shell. Here “on-shell” means on the
stationary surface of field equations for the deformed ac-
tion (107). As a consequence, it follows that the deformed
gauge algebra for the type I solutions is open, i.e., only
closes on-shell, unlike the initial one, which is Abelian. It
is interesting to mention that the matrices Ta from the
gauge transformations (111) of the matter fields are com-
muting (see the second relation in (94)), but the mat-
ter gauge transformations are not. This is essentially so
because (111) also involves the functions Web that sat-
isfy the identities (91). Thirdly, there appear terms which
are linear both in the antifields of the ghosts and in the
ghosts with the pure ghost number equal to two; the func-
tions that “glue” these BRST generators are precisely the
deformed first-order reducibility functions of the coupled
model. Fourthly, we notice the existence of pieces that are
quadratic in the antifields of the original fields and also lin-
ear in the ghosts with the pure ghost number equal to two
– they exhibit the on-shell closeness of the first-order re-
ducibility relations, in contrast to the initial theory, whose
reducibility takes place everywhere on the space of field
histories. The terms with the antighost number equal to
three and four complete the tensor gauge structure of the
interacting model. Among others, they lead to the conclu-
sion that the reducibility relations of order two also hold
only on-shell.
I.b. In the opposite situation, where the conserved matter
currents are not invariant under the gauge version of (70),

δRjµ
a

δyi
(Tb)

i
j y

j �= 0, (112)

it follows that (S1, S1) is not vanishing; hence the second-
order deformation S2 as solution to (33) will also be so.
This happens for instance if the matter currents contain
spacetime derivatives. Moreover, it is possible to obtain
other non-trivial, higher-order deformations when solving
the remaining equations ((34) etc.). The expressions of
these deformations strongly depend on the structure of
the matter theory and cannot be output in the general
setting considered here. What is always valid is that the
complete deformed solution to the master equation starts
like

S̄(I.b) = S̄(I.a) + g2S
(I.b)
2 + O (g3) . (113)

Accordingly, the Lagrangian action of the coupled gauge
theory will contain interactions of order g2 and possibly
of higher orders.

4.2.2 Type II solutions

Inserting (95)–(98) in (92) we deduce that (S1, S1) be-
comes

(S1, S1) (114)

=
∫

d4x

(
2
(
jµ
c f̄

c
ab +

δRjµ
a

δyi
(Tb)

i
j y

j

)
Aa

µη
b + ΛII

)
,
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with ΛII denoting the restriction of Λ to the type II solu-
tions. Again, we consider two basic situations.
II.a. Assume that

jµ
c f̄

c
ab +

δRjµ
a

δyi
(Tb)

i
j y

j = 0, (115)

or, which is the same, that the conserved matter currents
transform under the gauge version of the rigid symmetries
(70) according to the adjoint representation of the Lie
algebra L (G). Similar to subcase I.a, the relation (115)
might hold only if the currents jµ

a have no derivatives.
This is so since if we take f̄c

ab = 0 in (115), then we arrive
precisely at (101). In consequence, in this case we have
ΛII = 0, which further leads to (S1, S1) = 0, so we can
set S2 = 0. Moreover, all the higher-order equations (34)
etc. are satisfied with the choice S3 = S4 = · · · = 0. Con-
sequently, the deformed solution to the master equation
consistent to all orders in the coupling constant is pro-
vided by (78) where we use (79), (90) and (95)–(98), and
reduces to

S
(II.a)

=
∫

d4x
(
Ha

µD
µϕa + L0

([
yi
])

+ gjµ
aA

a
µ

− g

4 · 4!
εµνρλfe[abf̄

e
cd]A

a
µA

b
νA

c
ρA

d
λ +

1
2
Bµν

a F̄ a
µν

− gϕ∗a
(
f̄c

abϕc + Fab

)
ηb + gy∗

i (Ta)i
j y

jηa

+ A∗µ
a (Dµ)a

b η
b +H∗µ

a

(
2 (Dν)a

b C
b
µν − gf̄a

bcη
bHc

µ

)
+
g

2
η∗

c f̄
c
abη

aηb

+ B∗a
µν

(
−3 (Dρ)

b
a ηµνρ

b − gf̄c
abη

bBµν
c

+ 2g
(
f̄c

abϕc + Fab

)
Cbµν

+
g

8
εµνρλfe[abf̄

e
cd]A

b
ρA

c
λη

d
)

− 6gf̄c
ab

(
H∗µ

c B∗aνρCb
µνρ +B∗a

µνB
∗b
ρλη

µνρλ
c

)
− 3g

2 · 4!
εµνρλfe[abf̄

e
cd]B

∗a
µνB

∗b
ρλη

cηd

+ C∗µν
a

(−3 (Dρ)a
b C

b
µνρ + gf̄a

bcη
bCc

µν

)
+ η∗a

µνρ

(
4 (Dλ) b

a ηµνρλ
b + gf̄c

abη
bηµνρ

c

− 2g
(
f̄c

abϕc + Fab

)
Cbµνρ +

g

4!
εµνρλfe[abf̄

e
cd]A

b
λη

cηd
)

+ C∗µνρ
a

(
4
(
Dλ
)a

b
Cb

µνρλ − gf̄a
bcη

bCc
µνρ

)
+ gη∗a

µνρλ

(−f̄c
abη

bηµνρλ
c + 2

(
f̄c

abϕc + Fab

)
Cbµνρλ

− 2
(4!)2

εµνρλfe[abf̄
e
cd]η

bηcηd

)

+ gf̄c
ab

(
4
(
3C∗µν

c B∗aρλ + 2H∗µ
c η∗aνρλ

)
+ C∗µνρλ

c ηa
)
Cb

µνρλ

)
, (116)

where we used the notation

Dµϕa = ∂µϕa + g
(
f̄c

abϕc + Fab

)
Abµ, (117)

F
a

µν = ∂[µA
a
ν] + gf̄a

bcA
b
µA

c
ν , (118)

(Dµ)a
b = δa

b ∂µ − gf̄a
bcA

c
µ, (119)

(Dµ) b
a = δb

a∂µ + gf̄ b
acA

c
µ. (120)

The Lagrangian formulation of the interacting model is
deduced from (116) following the same pattern as in the
previous subsubsection, i.e. analyzing its components with
definite, increasing antighost numbers.

Thus, the Lagrangian action of the interacting theory
takes the simpler form

S̄
(II.a)
0 =

∫
d4x

(
Ha

µD
µϕa +

1
2
Bµν

a F
a

µν

− g

4 · 4!
εµνρλfe[abf̄

e
cd]A

a
µA

b
νA

c
ρA

d
λ

+ L0
([
yi
])

+ gjµ
a

(
yi
)
Aa

µ

)
, (121)

and it is invariant under the deformed (generating set of)
gauge transformations

δ̄εϕa = −g (f̄c
abϕc + Fab

)
εb,

δ̄εA
a
µ = (Dµ)a

b ε
b, (122)

δ̄εH
a
µ = 2 (Dν)a

b ε
b
µν − gf̄a

bcε
bHc

µ, (123)

δ̄εB
µν
a = −3 (Dρ)

b
a εµνρ

b − gf̄c
abε

bBµν
c

+ 2g
(
f̄c

abϕc + Fab

)
εbµν

+
g

8
εµνρλfe[abf̄

e
cd]A

b
ρA

c
λε

d, (124)

δ̄εy
i = g (Ta)i

j y
jεa. (125)

Let us briefly comment on the physical features of the
coupled model in this situation. The first three terms
from (121) describe again the self-interactions among the
BF fields. The abelian field strengths of the one-forms{
Aa

µ

}
are now deformed into the standard Yang–Mills

form (118), instead of the more general expression (104)
from the previous case. Also, the coupling between the BF
and the matter sector is a minimal one, of the form “vector
fields times currents”, where the currents are now precisely
the conserved, purely matter ones from (69). Along the
same lines, we read that the new gauge transformations of
the one-forms

{
Aa

µ

}
are standard Yang–Mills, being given

by the second relation in (122), with the corresponding
covariant derivative expressed by (119). The matter fields
are endowed, as a consequence of the type II solutions,
with the deformed gauge transformations (125), which
are nothing but the gauge version of the rigid ones (70)
with the generators as in (79) and satisfying the relation
(98). We would expect that the deformed gauge algebra
be precisely the Lie algebra L (G) with the structure con-
stants −f̄c

ab. However, this is not true since (116) contains
a term proportional to εµνρλfe[abf̄

e
cd]B

∗a
µνB

∗b
ρλη

cηd, which
shows that the deformed gauge algebra is in fact open, so
it closes only on-shell. (More precisely, it closes when the
field equations for the two-forms hold, δS̄(II.a)

0 /δBµν
a ≈ 0.)

This is a relatively rare example of gauge theory with an
open gauge algebra, whose structure functions reduce en-
tirely to the structure constants of a Lie algebra. If we
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however forbid the breaking of PT invariance, namely
take feab = 0 in (116), then the deformed gauge alge-
bra indeed becomes the Lie algebra L (G). As for the re-
dundancy of the new gauge transformations, it remains
of order two, with the corresponding deformed reducibility
relations closing on-shell.
II.b. In the opposite situation, where the conserved mat-
ter currents do not transform under the gauge version of
the rigid symmetries (70) according to the adjoint repre-
sentation of the Lie algebra L (G):

jµ
c f̄

c
ab +

δRjµ
a

δyi
(Tb)

i
j y

j �= 0, (126)

we find ourselves in the same framework as in subcase I.b.
Thus, (S1, S1) is not vanishing, such that the second-order
deformation S2 involved in (33) will also be so. In prin-
ciple, it is possible to infer other non-trivial higher-order
deformations as solutions to the equations ((34) etc.). The
concrete form of these deformations depends again on the
structure of the matter theory and cannot be prescribed
here. We can only write that the complete deformed solu-
tion to the master equation begins like

S̄(II.b) = S̄(II.a) + g2S
(II.b)
2 + O (g3) , (127)

such that the interacting Lagrangian action includes ver-
tices of order g2, and possibly of higher orders.

Finally, a word of caution. Once the deformations re-
lated to a given matter theory are computed, special at-
tention should be paid to the elimination of non-locality,
as well as of triviality of the resulting deformations. This
completes our general deformation procedure, based on
local BRST cohomology.

5 Examples

Next, we consider two examples of matter theories – Dirac
fields and real scalar fields – and determine their consistent
interactions with the four-dimensional BF model under
discussion in the light of the analysis performed in the
previous sections.

5.1 Couplings for a set of Dirac fields

First, we examine the consistent couplings with a collec-
tion of massive Dirac fields. In view of this, we start from
the Lagrangian action of the matter fields Smatt

0
[
yi
]

in (1)
of the form

Smatt
0

[
ψα

A, ψ̄
A
α

]
=
∫

d4x
(
ψ̄A

α

(
i (γµ)α

β ∂µ −mδα
β

)
ψβ

A

)
,

(128)
where ψα

A and ψ̄A
α (A = 1, I ′, α = 1, 2, 3, 4) denote the

spinor components of the complex Dirac spinors ψA and
ψ̄A (the bar operation signifies spinor conjugation). The
actions of δ and γ on the matter generators from the free
BRST complex are expressed by

δψα
A = 0, δψ̄A

α = 0, (129)

δψ∗A
α = −

(
i (γµ)β

α ∂µ +mδβ
α

)
ψ̄A

β , (130)

δψ̄∗α
A = −

(
i (γµ)α

β ∂µ −mδα
β

)
ψβ

A, (131)

γψα
A = 0, γψ̄A

α = 0, γψ∗A
α = 0, γψ̄∗α

A = 0, (132)

where the antighost number one antifields ψ∗A
α and ψ̄∗α

A
are bosonic. Their actions on the variables from the BF
sector are correctly defined by the appropriate relations
in (18)–(26). Let us consider the rigid symmetries

∆ξψ̄
A
α = ψ̄B

α (Ta)A
B ξ

a, ∆ξψ
α
A = − (Ta)B

A ψ
α
Bξ

a, (133)

of the action (128), such that the corresponding conserved
currents read

jµ
a = iψ̄A

α (γµ)α
β (Ta)B

A ψ
β
B . (134)

From (134) we find that

δRjµ
a

δyi
(Tb)

i
j y

j =
δRjµ

a

δψ̄A
α

(Tb)
A
B ψ̄

B
α − δRjµ

a

δψα
A

(Tb)
B
A ψ

α
B ,

(135)
and hence

δRjµ
a

δψ̄A
α

(Tb)
A
B ψ̄

B
α − δRjµ

a

δψα
A

(Tb)
B
A ψ

α
B

= iψ̄A
α (γµ)α

β [Ta, Tb]
B
A ψ

β
B . (136)

In the case of type I solutions (see (94)), the relation
(136) becomes

δRjµ
a

δψ̄A
α

(Tb)
A
B ψ̄

B
α − δRjµ

a

δψα
A

(Tb)
B
A ψ

α
B = 0, (137)

so that we are under the conditions of subcase I.a. Conse-
quently, (75) takes now the form

ā1 =
(
ψ̄A

α ψ̄
∗α
B − ψ∗A

α ψα
B

)
(Ta)B

A k
acWcbη

b

+ iH∗µ
m kac ∂Wcb

∂ϕm
ψ̄A

α (γµ)α
β (Ta)B

A ψ
β
Bη

b, (138)

while ā0 (the solution to (63)) can be written as

ā0 = iψ̄A
α (γµ)α

β (Ta)B
A ψ

β
Bk

acWcbA
b
µ. (139)

According to the general theory, the consistency of the
first-order deformation leads to no higher-order deforma-
tions in this situation. The deformed Lagrangian action
and accompanying gauge transformations are given by
(107) and respectively (108)–(111) where we set yi →
ψα

A, ψ̄
A
α and use (133) and (134).

For the type II solutions (see (95)–(98)) it follows that
the relation (136) leads to

δRjµ
a

δψ̄A
α

(Tb)
A
B ψ̄

B
α − δRjµ

a

δψα
A

(Tb)
B
A ψ

α
B = −jµ

c f̄
c
ab, (140)

so we are in subcase II.a. Furthermore, we have

ā1 =
(
ψ̄A

α ψ̄
∗α
B − ψ∗A

α ψα
B

)
(Ta)B

A η
a, (141)
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ā0 = iψ̄A
α (γµ)α

β (Ta)B
A ψ

β
BA

a
µ. (142)

The consistency of the first-order deformation again pro-
duces no higher-order deformations. Similarly, the de-
formed action and its gauge transformations follow from
the relations (121) and (122)–(125) where we replace yi

by ψα
A and ψ̄A

α , and take into account the relations (133)
and (134).

5.2 Couplings for a collection of real scalar fields

Second, we analyze the case where the role of the mat-
ter fields is played by a collection of real scalar fields,{
φA
}

A=1,I
. In this situation the Lagrangian action of the

matter fields from (1) is

Smatt
0

[
φA
]

=
∫

d4x

(
1
2
KAB

(
∂µφ

A
) (
∂µφB

)− V
(
φA
))

,

(143)
where KAB is an invertible, symmetric, constant matrix.
We assume that the matter action (143) is invariant under
the bosonic rigid symmetries

∆ξφ
A = − (Ta)A

B φ
Bξa. (144)

This is true if the constant matrices Ta, of elements (Ta)A
B ,

are such that the following relations are satisfied:

∂V

∂φA
(Ta)A

B φ
B = 0, (145)(

T̃a

)
AB

= −
(
T̃a

)
BA

, (146)

where (
T̃a

)
AB

= KAE (Ta)E
B . (147)

Assuming that such matrices exist, it follows that the con-
served currents associated with the rigid symmetries (144)
read

jµ
a =

(
∂µφA

)
φB
(
T̃a

)
AB

. (148)

For the model under consideration we then find that

δRjµ
a

δyi
(Tb)

i
j y

j = −δRjµ
a

δφA
(Tb)

A
B φ

B . (149)

With the help of the expression (148) we deduce that

−δRjµ
a

δφA
(Tb)

A
B φ

B

= − [Ta, Tb]
C
B KAC

(
∂µφA

)
φB

− ∂µ

(
1
2

{Ta, Tb}C
B KACφ

AφB

)
, (150)

where {Ta, Tb} = TaTb + TbTa.
For the type I solutions (see (94)) the relation (150)

becomes

−δRjµ
a

δφA
(Tb)

A
B φ

B = −∂µ

(
1
2

{Ta, Tb}C
B KACφ

AφB

)
�= 0,

(151)

so we are in subcase I.b. In this context we have

ā1 = kac
(
−φ∗

A (Ta)A
B φ

BWcb

+ H∗µ
m

∂Wcb

∂ϕm

(
∂µφ

A
) (
T̃a

)
AB

φB

)
ηb (152)

and respectively

ā0 = kac
(
∂µφA

) (
T̃a

)
AB

φBWcbA
b
µ. (153)

The consistency of the first-order deformation of the so-
lution to the master equation leads to a non-trivial defor-
mation at the second order, of the form

S
(I.b)
2 = −1

4
kapkdeKAC {Ta, Td}C

B

∫
d4xφAφB (154)

×
(
WpbA

bµ +H∗µ
m ηb ∂Wpb

∂ϕm

)(
WecA

c
µ +H∗

nµη
c ∂Wec

∂ϕn

)
.

Because of (102) adapted to our model and of (154) we
obtain that S(I.b)

3 = 0 and also S(I.b)
4 = S

(I.b)
5 = · · · = 0.

In this situation we get that the full deformed Lagrangian
action is a polynomial of order two in the coupling con-
stant

S̄
(I.b)
0 = S̄

(BFI)
0 (155)

+
∫

d4x

[
1
2
KAB

((
D̂µ

)A

C
φC

)((
D̂µ
)B

D
φD

)
− V

(
φA
)]
,

where (
D̂µ

)A

C
= δA

C∂µ + g (Ta)A
C k

abWbcA
c
µ, (156)

and S̄
(BFI)
0 denotes the action that describes the self-

interactions among the BF fields for the type I solutions,
and reduces to the first three terms from the right-hand
side of (107). The deformed gauge transformations of (155)
are as in (108) and (110)–(111) where we set yi = φA and
(Ta)i

j = − (Ta)A
B , while the gauge transformations of the

one-forms
{
Ha

µ

}
are enriched with terms of order two in

the coupling constant:

δ̂′
εH

a
µ = δ̂εH

a
µ (157)

+ g2KAB (Tb)
A
C φ

C (Te)
B
D φDkefWfgA

g
µk

bc ∂Wcd

∂ϕa
εd.

In the above δ̂εHa
µ can be found in (109) and jµ

a must be
taken as in (148). The commutators among the deformed
gauge transformations are also modified with terms of or-
der two in the coupling constant, but the reducibility rela-
tions stop at order one in the coupling constant and hence
take the same form as in subcase I.a.

For the type II solutions (see (95)–(98)) the relation
(150) gives
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−δRjµ
a

δφA
(Tb)

A
B φ

B + f̄c
abj

µ
c

= −∂µ

(
1
2

{Ta, Tb}C
B KACφ

AφB

)
, (158)

so we are in subcase II.b. Consequently, we have that

ā1 = −φ∗
A (Ta)A

B φ
Bηb (159)

and respectively

ā0 =
(
∂µφA

) (
T̃a

)
AB

φBAa
µ. (160)

The consistency of the first-order deformation leads to the
second-order deformation

S
(II.b)
2 = −1

4
KAC {Ta, Td}C

B

∫
d4xφAφBAaµAd

µ. (161)

Using (116) adapted to the present model and (161) we
get that S(II.b)

3 = 0 and, furthermore, S(II.b)
4 = S

(II.b)
5 =

· · · = 0. Consequently, the complete Lagrangian action of
the coupled model becomes

S̄
(II.b)
0 = S̄

(BFII)
0 (162)

+
∫

d4x

[
1
2
KAB

((
D̄µ

)A
C
φC
)((

D̄µ
)B

D
φD
)

− V
(
φA
)]
,

where (
D̄µ

)A
C

= δA
C∂µ + g (Ta)A

C A
a
µ, (163)

and S̄
(BFII)
0 means the action responsible for the self-

interactions among the BF fields for the type II solutions,
being represented by the first three terms from the right-
hand side of (121). It is again a polynomial of order two
in the deformation parameter. In this situation the gauge
transformations of the action (162) gain no new compo-
nents of order two or higher in the coupling constant and
are expressed as in (122)–(125) where we set yi = φA and
(Ta)i

j = − (Ta)A
B . Consequently, the gauge algebra and

the reducibility relations are the same as in subcase II.a.

6 Conclusion

The main result of this paper is that we can indeed add
consistent Lagrangian interactions to a “free” theory de-
scribing a collection of BF-like models and a matter the-
ory in four dimensions. Our treatment is based on the
deformation of the solution to the master equation. The
first-order deformation is computed by means of the lo-
cal BRST cohomology in ghost number zero. Its existence
is due to the hypothesis that the matter theory is invari-
ant under some (non-trivial) bosonic global symmetries,
which produce some (non-trivially) conserved currents jµ

a .
The consistency of the first-order deformation restricts the
commutators of the constant matrices Ta that enter the

global matter symmetries to either vanish (type I solu-
tions) or close according to a Lie algebra (type II solu-
tions). The deformation procedure stops at order one if
the matter currents jµ

a include no derivatives and if they
either remain invariant under the gauge version of the rigid
symmetries in the first case or transform under the gauge
version according to the adjoint representation of L (G) in
the second case. Otherwise, there appear deformations of
order g2 and possibly of higher orders.

The common features of the interacting gauge mod-
els resulting from the two types of solutions at order g
are as follows: the matter fields are primarily coupled to
the vector fields Aa

µ; all the fields (BF and matter) gain
deformed gauge transformations; the gauge algebra of the
deformed gauge transformations closes on-shell (in spite of
the Abelian and respectively Lie character of the matrices
Ta), in contrast to the “free”, Abelian one; the reducibil-
ity relations hold on-shell, i.e. on the stationary surface
of deformed field equations, unlike the initial ones, that
held off-shell. The main differences between the two cases
are revealed by the couplings of the matter fields to the
BF sector and by the expressions of the gauge transforma-
tions. Indeed, for the type I solutions we find a generalized
minimal coupling in the sense that even if it is formally ex-
pressed like “vector fields Aa

µ times currents”, however the
currents are not the conserved matter currents jµ

a , but jµ
a

in some “background” potentials of scalar fields propor-
tional with Wab, while for type II solutions we recover a
genuine minimal coupling. The same observation holds for
the gauge transformations of the matter fields: in the for-
mer case they can be viewed as being obtained by gauging
the rigid matter symmetries and by further putting them
in the same “background” potentials of scalar fields, while
in the latter they reduce to gauging the rigid symmetries
only. The deformed field strengths and gauge transforma-
tions of the one-forms Aa

µ inherit a similar behavior: they
are generalized Yang–Mills-like for type I solutions, with
the usual structure constants replaced by the derivatives
of the “background” potentials, and standard Yang–Mills
corresponding to the Lie algebra L (G) for type II solu-
tions. Finally, we note that the exemplification of our re-
sults in the case of a set of Dirac fields leads to no de-
formations of order two or higher for either type I or II
solutions, while for a system of real scalar fields we obtain
second-order deformations for both solutions.
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Appendix A:
Notations used in Sect. 4.2

The various notations used within the formula (81) are
listed below:

Kabc = ηaηbϕ∗c + 2ηaAbµHc
µ

+ 2
(
AaµAbν − 2B∗aµνηb

)
Cc

µν

+ 4
(
ηaη∗bµνρ + 3B∗aµνAbρ

)
Cc

µνρ (A.1)

− 4
(
ηaη∗bµνρλ + 6B∗aµνB∗bρλ − 4η∗aµνρAbλ

)
Cc

µνρλ,

Kabc
d =

(
4H∗ν

d Aaµηb − C∗µν
d ηaηb

)
Cc

µν −H∗µ
d ηaηbHc

µ

+
(
6H∗ρ

d AaµAbν − 12H∗ρ
d B∗aµνηb + 6C∗µν

d ηaAbρ

− C∗µνρ
d ηaηb

)
Cc

µνρ +
(−48H∗λ

d B∗aµνAbρ

+ 12C∗µν
d AaρAbλ + 16H∗λ

d η∗aµνρηb − 24C∗µν
d B∗aρληb

− 8C∗µνρ
d Aaληb − C∗µνρλ

d ηaηb
)
Cc

µνρλ, (A.2)

Kabc
de = −3

(
C∗µν

d H∗ρ
e ηa + 2H∗µ

d H∗ν
e Aaρ

)
ηbCc

µνρ

− H∗µ
d H∗ν

e ηaηbCc
µν +

(−24H∗µ
d H∗ν

e B∗aρληb

+ 12H∗µ
d H∗ν

e AaρAbλ − 24C∗µν
d H∗ρ

e Aaληb

− 3C∗µν
d C∗ρλ

e ηaηb + 4C∗µνρ
d H∗λ

e ηaηb
)
Cc

µνρλ, (A.3)

Kabc
def = −2

(
4H∗µ

d H∗ν
e H∗ρ

f Aaλ

+3C∗µν
d H∗ρ

e H∗λ
f ηa

)
ηbCc

µνρλ

− H∗µ
d H∗ν

e H∗ρ
f ηaηbCc

µνρ, (A.4)

Kabc
defg = −H∗µ

d H∗ν
e H∗ρ

f H∗λ
g ηaηbCc

µνρλ, (A.5)

Uabc
d =

(−2ηaAb
µA

c
ν +B∗a

µνη
bηc
)
Bµν

d −Aa
µη

bηcA∗µ
d

+
(−Aa

µA
b
νA

c
ρ + 6ηaB∗b

µνA
c
ρ + ηbηcη∗a

µνρ

)
ηµνρ

d

− 1
3
ηaηbηcη∗

d +
(−12Aa

µA
b
νB

∗c
ρλ + 12ηaB∗b

µνB
∗c
ρλ

− 8ηaη∗b
µνρA

c
λ + η∗c

µνρλη
aηb
)
ηµνρλ

d , (A.6)

Uabc
d,e =

(
H∗µ

e Aaνηbηc +
1
6
C∗µν

e ηaηbηc

)
Bdµν

− 1
3
H∗µ

e ηaηbηcA∗
dµ +

(−3H∗ρ
e ηaAbµAcν

− 3H∗ρ
e ηaηbB∗cµν +

3
2
C∗µν

e ηaηbAcρ

+
1
6
C∗µνρ

e ηaηbηc

)
ηdµνρ +

(
24AaµH∗ν

e ηbB∗cρλ

+ 4H∗λ
e AaµAbνAcρ − 4H∗λ

e ηaηbη∗cµνρ

+ 6C∗µν
e ηaηbB∗cρλ − 6C∗µν

e ηaAbρAcλ

+ 8C∗µνρ
e ηaηbAcλ +

1
6
C∗µνρλ

e ηaηbηc

)
ηdµνρλ, (A.7)

Uabc
d,ef =

1
6
H∗µ

e H∗ν
f ηaηbηcBdµν +

3
2
H∗µ

e H∗ν
f ηaηbAcρηdµνρ

+
1
2
C∗µν

e H∗ρ
f ηaηbηcηdµνρ +

(
6H∗µ

e H∗ν
f ηaηbB∗cρλ

− 6H∗µ
e H∗ν

f ηaAbρAcλ + 6C∗µν
e H∗ρ

f ηaηbAcλ (A.8)

+
2
3
C∗µνρ

e H∗λ
f ηaηbηc +

1
2
C∗µν

e C∗ρλ
f ηaηbηc

)
ηdµνρλ,

Uabc
d,efg =

(
2H∗µ

e H∗ν
f H∗ρ

g ηaηbAcλ

+ C∗µν
e H∗ρ

f H∗λ
g ηaηbηc

)
ηdµνρλ

+
1
6
H∗µ

e H∗ν
f H∗ρ

g ηaηbηcηdµνρ, (A.9)

Uabc
d,efgh =

1
6
H∗µ

e H∗ν
f H∗ρ

g H∗λ
h ηaηbηcηdµνρλ, (A.10)

Kabcdf =
1
8
εµνρλ

[(
1
3!
Aa

µA
b
ν −B∗a

µνη
b

)
Ac

νA
d
ρ (A.11)

+
1
3

(
B∗a

µνB
∗b
ρλ − 2

3
η∗a

µνρA
b
λ +

1
4!
η∗a

µνρλη
b

)
ηcηd

]
ηf ,

Kabcdf
e =

1
4!
εµνρλ

[
1
2

(
1
5!
C∗

eµνρλη
a +

1
3!
C∗

eµνρA
a
λ (A.12)

+
1
2
C∗

eµνB
∗a
ρλ +

1
3
H∗

eµη
∗a
νρλ

)
ηbηc

− H∗
eµ

(
Aa

νA
b
ρ − 2B∗a

νρη
b
)
Ac

λ − 1
2
C∗

eµνA
a
ρA

b
λη

c

]
ηdηf ,

Kabcdf
eg =

1
2 · 4!

εµνρλ

[
1
2

(
1
15
H∗

eµC
∗
gνρλη

a

+
1
20
C∗

eµνC
∗
gρλη

a +H∗
eµC

∗
gνρA

a
λ

)
ηb

− H∗
eµH

∗
gν

(
Aa

ρA
b
λ − 2B∗a

ρλη
b
)]
ηcηdηf , (A.13)

Kabcdf
egh =

1
4 · 4!

εµνρλH∗
eµH

∗
gν

×
(

1
10
C∗

hρλη
a +

1
3
H∗

hρA
a
λ

)
ηbηcηdηf , (A.14)

Kabcdf
eghl =

1
2 · 4! · 5!

εµνρλH∗
eµH

∗
gνH

∗
hρH

∗
lλη

aηbηcηdηf ,

(A.15)

Ka
b = 4εµνρλ

[
2
(−Ca

µνρλη
∗
b + Ca

µνρA
∗
bλ

)
+ Ca

µνBbρλ

− (
ϕ∗aηbµνρλ −Ha

µηbνρλ

)]
, (A.16)

Ka
b,c = 4εµνρλ

[
ηbµνρλ

(
Ca

στκςC
∗στκς
c + Ca

στκC
∗στκ
c

+ Ca
στC

∗στ
c +Ha

σH
∗σ
c )

+ Ca
µνρλ (ηbστκC

∗στκ
c +BbστC

∗στ
c − 2A∗

bσH
∗σ
c ) (A.17)

+ ηbνρλ

(
3Ca

µστC
∗στ
c − 2Ca

µσH
∗σ
c
)

+ 3BbρλC
a
µνσH

∗σ
c
]
,

Ka
b,cd = 4εµνρλ

[
ηbµνρλ

(
Ca

στκς (4H∗σ
c C∗τκς

d + 3C∗στ
c C∗κς

d )

+ 3Ca
στκH

∗σ
c C∗τκ

d + Ca
στH

∗σ
c H∗τ

d )
+ Ca

µνρλ (3ηbστκH
∗σ
c C∗τκ

d +BbστH
∗σ
c H∗τ

d )
]
, (A.18)

Ka
b,cde = 4εµνρλ

[
ηbµνρλ

(
6Ca

στκςH
∗σ
c H∗τ

d C∗κς
e (A.19)

+ Ca
στκH

∗σ
c H∗τ

d H∗κ
e ) + Ca

µνρληbστκH
∗σ
c H∗τ

d H∗κ
e

]
,

Ka
b,cdef = 4εµνρλη

µνρλ
b Ca

στκςH
∗σ
c H∗τ

d H∗κ
e H∗ς

f , (A.20)

Kc
ab = εµνρλ

[
−6
(
ηµνσ

a Bρλ
b Ac

σ + 3ηµστ
a ην

bστB
∗cρλ

)
− 2ηµνρλ

a

(
ηστκς

b η∗c
στκς + 2ηστκ

b η∗c
στκ + 2Bστ

b B∗c
στ (A.21)

− 2A∗σ
b Ac

σ − 2η∗
bη

c) + 4ηµνρ
a A∗λ

b ηc −Bµν
a Bρλ

b ηc
]
,
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Kc
ab,d = εµνρλ

[
−9ηµστ

a ην
bστ

(
ηcC∗ρλ

d − 2AcρH∗λ
d

)
− ηστκς

a ηbστκς

(
ηcC∗µνρλ

d + 4C∗µνρ
d Acλ

+ 12C∗µν
d B∗cρλ + 8H∗µ

d η∗cνρλ
)

+ 6ηµνσ
a Bρλ

b ηcH∗
dσ

− 2ηµνρλ
a (ηστκ

b (ηcC∗
dστκ + 3Ac

κC
∗
dστ − 6B∗c

τκH
∗
dσ)

+ 2A∗σ
b ηcH∗

dσ +Bστ
b (ηcC∗

dστ + 2Ac
τH

∗
dσ))] , (A.22)

Kc
ab,de = −εµνρλ

[
2ηµνρλ

a

× (3ηστκ
b (H∗

dσC
∗
eτκη

c +H∗
dσH

∗
eτA

c
κ) +Bστ

b H∗
dσH

∗
eτη

c)

+ ηστκς
a ηbστκς

((
4H∗µ

d C∗νρλ
e + 3C∗µν

d C∗ρλ
e

)
ηc

+ 12H∗µ
d C∗νρ

e Acλ + 12H∗µ
d H∗ν

e B∗cρλ
)

+ 9ηµστ
a ην

bστH
∗ρ
d H∗λ

e ηc
]
, (A.23)

Kc
ab,def = −2εµνρλ [ηστκς

a ηbστκς

×
(
3H∗µ

d H∗ν
e C∗ρλ

f ηc + 2H∗µ
d H∗ν

e H∗ρ
f Acλ

)
+ ηµνρλ

a ηστκ
b H∗

dσH
∗
eτH

∗
fκη

c
]
, (A.24)

Kc
ab,defg = −εµνρλη

στκς
a ηbστκςH

∗µ
d H∗ν

e H∗ρ
f H∗λ

g ηc, (A.25)

Kabc
d = ηµνρ

d

(
η∗a

µνρη
bηc − 6B∗a

µνA
b
ρη

c −Aa
µA

b
νA

c
ρ

)
− A∗µ

d Aa
µη

bηc +Bµν
d

(
B∗a

µνη
bηc −Aa

µA
b
νη

c
)

+ ηµνρλ
d

(
η∗a

µνρλη
bηc − 4η∗a

µνρA
b
λη

c (A.26)

+ 12B∗a
µν

(
B∗b

ρλη
c −Ab

ρA
c
λ

))− 1
6
η∗

dη
aηbηc,

Kabc
d,e = −ηµνρ

d

((
1
6
ηaC∗

eµνρ

−3
2
Aa

ρC
∗
eµν + 3B∗a

νρH
∗
eµ

)
ηbηc

+ 3Aa
νA

b
ρη

cH∗
eµ

)
+ ηµνρλ

d

((
1
6
ηaC∗

eµνρλ + 2Aa
λC

∗
eµνρ

+ 6B∗a
ρλC

∗
eµν + 4η∗a

νρλH
∗
eµ

)
ηbηc − 2

(
3Aa

ρA
b
λη

cC∗
eµν

+ 12B∗a
νρA

b
λη

cH∗
eµ + 2Aa

νA
b
ρA

c
λH

∗
eµ

))
(A.27)

+
(

−1
3
A∗µ

d ηaH∗
eµ +Bµν

d

(
1
6
ηaC∗

eµν +Aa
νH

∗
eµ

))
ηbηc,

Kabc
d,ef = −1

2
ηµνρ

d

(
ηaH∗

eµC
∗
fνρ − 3Aa

ρH
∗
eµC

∗
fν

)
ηbηc

+ ηµνρλ
d

((
2
3
ηaH∗

eµC
∗
fνρλ +

1
2
ηaC∗

eµνC
∗
fρλ

+ 6Aa
λH

∗
eµC

∗
fνρ +

1
6
B∗a

ρλH
∗
eµH

∗
fν

)
ηbηc

− 6Aa
ρA

b
λη

cH∗
eµH

∗
fν

)
+

1
6
Bµν

d ηaηbηcH∗
eµH

∗
fν , (A.28)

Kabc
d,efg =

(
ηµνρλ

d

(
ηaC∗

gρλ − 2Aa
λH

∗
gρ

)− 1
6
ηµνρ

d ηaH∗
gρ

)
× ηbηcH∗

eµH
∗
fν , (A.29)

Kabc
d,efgh =

1
6
ηµνρλ

d ηaηbηcH∗
eµH

∗
fνH

∗
gρH

∗
hλ. (A.30)
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